Fire protection systems are one of the most complex and ubiquitous structures within facilities today. They contain many parts intertwined with other building components. For example, emergency lighting and smoke detectors wire into your electrical system. Fire pumps and hydrants hook up to your water mains. Fire alarms connect to your building’s access system to automatically unlock exterior doors.
Your HVAC system is also closely coupled to your fire protection equipment, and its maintenance and condition can directly impact the safety of your inhabitants and the extent of damage to your property.
1. Ductwork
Your system’s ductwork distributes conditioned air throughout the building. But during a fire, such distribution is unwanted. As temps rise and smoke builds, your HVAC’s return ductwork can carry smoke, toxic gases, and superheated air throughout other areas. This spreads the fire and puts occupants in danger. Even worse, supply side ductwork can actually “feed” a localised fire with fresh oxygen, increasing the temperature and property damage.
During a fire, smoke is the number one killer. In fact, most fire deaths are not caused by burns, but by smoke inhalation. Therefore, controlling its spread is safety 101. Plus, smoke can often emit from sources besides an open flame. Burnt toast or microwave popcorn could result in smoke rolling through an entire office floor. This could cause a panic and dangerous stampede to exits. So, any fire safety plan should also include the perception of fire itself as a real threat to life and property.
Duct smoke detectors can help. These devices reside within your ductwork where they detect smoke moving throughout your HVAC system and initiate pre-programmed actions. For example, one of your HVAC fan motors overheats and produces smoke. Once activated, the duct detector could turn on an exhaust fan, close a damper, shut down automation systems, signal an alarm and/or cut power to the fan motor itself.
2. Fire and Smoke Dampers
Fire dampers are another critical way your HVAC systems aid your facility’s fire protection system. Dampers are essentially air valves that shut off airflow in the event of a fire. They’re normally installed at any point where your system’s ductwork passes through a wall, floor or other fire-rated partition. The idea is to close off HVAC ventilation for any area where a fire exists. So, locating them within a fire-rated wall, for example, retains the integrity of the wall even if the ductwork falls away or is damaged by fire.
There are two basic types of dampers: fire and smoke. Fire dampers are usually triggered by a physical device such as a fusible link. Once the temperature rises above a specific point, the fusible link will melt and trigger the closing of the fire damper. As its name suggests, the damper’s main function is to stop fire from spreading through the ductwork.
Smoke dampers are part of the smoke suppression system. They typically connect to fire alarm systems, which trigger the dampers to close and prevent smoke transference. There are smoke/fire combination dampers as well.
Most fire codes require fire and smoke dampers to be actuated and tested every few years, depending on the facility type. Make sure you know your fire code and test that your dampers are physically working, installations are compliant and any replacements are compatible with your system.
3. AHU Support and Location
In the event of a fire, your alarm system should shut down any air handling units (AHUs) within the affected area or site wide. Again, the purpose is to contain the movement of smoke and air, and your AHU is the central place where this happens. However, operation isn’t the only consideration.
AHUs are large, heavy pieces of equipment weighing several tons depending on the size of the system. They’re also loud; that’s why they’re usually located within mechanical rooms and building rooftops. In multi-storey properties, these behemoths can become a danger to building inhabitants. During a fire, walls and floors weaken under intense heat, and those supporting heavy AHUs can give way quickly. While there’s little you can do to predict heat intensity during a fire, you can ensure your AHUs are appropriately located and that building floors are rated for their weight and size.
Conclusion
To function correctly, building systems must work together. It’s not enough just to tackle preventative maintenance for one system and ignore another. Their intertwining requires awareness of how changing one system affects another. Your HVAC system is no different. Upkeep and maintenance of it directly affects the effectiveness and efficiency of your fire protection system.
The COVID pandemic increased awareness and use of relatively new decontamination methods for medical facilities. In addition to standard surface cleaning and disinfection, hospital managers employ vaporized hydrogen peroxide (VHP) systems within negative pressure rooms to eliminate SARS-CoV-2. Sometimes referred to as “Deprox,” these systems distribute a mixture of hydrogen peroxide and water within a room. The mixture is small enough to decontaminate areas that are too difficult or impossible to clean by hand.
However, VHPs must work in conjunction with HVAC systems to be safe and effective, and most functional descriptions put strict limits on an HVAC’s operation during decontamination. Use the following information to guide your design when connecting to VHPs.
HP Vapor vs Aerosol Systems
There are two methods for dispersing hydrogen peroxide (H2O2) for airborne disinfection. One is vapor phase hydrogen peroxide (VPHP) and the other is aerosolised hydrogen peroxide (aHP). The main difference being the size and concentration of the hydrogen peroxide as it leaves the system. VPHP systems produce much smaller particles and at higher concentration than aHPs. They are much closer to a gas than aHPs, which are more of a “fog” ranging from 5 and 20 μm in size.
Exposure Limits
Both VPHPs or aHPs require some downtime for operation and room exposure levels to return to normal. Decontamination cycles may take up to three hours to complete. Exposure to hydrogen peroxide vapor can be harmful, resulting in irritation to the eyes, nose and throat. The OSHA standard for permissible exposure limits to H2O2 is 1 part per million parts of air (ppm) averaged over an eight-hour work shift.
Functional Descriptions
Include these sections when writing a FD that includes VPHP or aHP for negative/positive pressure rooms.
Room Modes—Room modes include isolation, deprox and standby. During the deprox process, the HVAC system should be turned off and dampers closed to ensure the VHP system works effectively.
Closing Dampers—When switching from standby or isolation to deprox mode, factor in a lag time to allow dampers to fully close. For example:
If the room is switched to deprox mode, the deprox LED will flash on and off for 75 seconds whilst the room dampers are driving closed. Once the 75 seconds have passed, the LED will be enabled.
Velocity Pressure Setpoint—Include a deprox pressure setpoint when setting duct velocity pressure points.
If the room is put into deprox mode, the velocity pressure setpoint is reduced to the deprox velocity pressure setpoint (To be determined at time of commissioning).
Smoke and Fire Detectors
Particles from VPHP or aHP can set off fire and smoke detectors. Consider the implications for your HVAC system. Since HVAC systems are normally integrated into fire systems to ensure proper exhaust of smoke, a false alarm may affect your system.
Colder weather often brings spikes in COVID-19 and influenza cases. With this in mind, we should continue promoting vaccinations, mask wearing, social distancing, surface cleaning and handwashing inside your buildings. However, we shouldn’t forget about our HVAC systems; they also play an important role in stopping the spread of COVID. In fact, if not properly managed, these systems significantly contribute to virus transmission. To properly protect your facility’s visitors and workers this winter, prep your HVAC system the right way by following these guidelines.
Use an Air Dilution Strategy
Viruses like SARS-CoV-2 travel within tiny liquid droplets expelled through our coughs and sneezes. These droplets can range in size from larger particles (5-10 μm) to smaller ones (less than 5 μm). Larger droplets fall to the ground quickly, while smaller aerosols linger in the air much longer. Their hang time presents both a problem and an opportunity. The problem is that these tiny airborne particles can easily cluster together, becoming concentrated within small areas like offices. Concentration makes them more potent and contagious.
However, these clusters are also easily dispersed or “diluted” by adequate air flow. So, an effective dilution strategy is to keep a good mixture of air within every part of your building. It’s a similar idea to running vs standing water. Which is safer to drink? Here are some tips for an effective dilution strategy.
Increase Outside Air Flow
Increasing outside air flow helps dilute recirculated interior air and break up any high concentration particle clusters. The CDC recommends the following tips when introducing outside air flow into your interior spaces:
Disable demand-controlled ventilation (DCV) systems
Open outdoor air dampers beyond minimum settings
When conditions allow, open windows and external doors
Use stand-alone fans inside windows
Set indoor AC unit fan speeds to “on” instead of “auto”
Run your systems longer, 24/7 if possible
CAVEAT: Increasing outside air flow during very cold or very warm weather raises your energy costs and puts added stress on your system to maintain set points. So, some actions may only be practical during milder weather. Another concern is the introduction of pollutants and pollen into the building. For occupants with allergies, outside air could contain possible health risks from contaminants. Increasing outside air flow during very cold or very warm weather raises your energy costs and puts added stress on your system to maintain set points. So, some actions may only be practical during milder weather.
Another concern is the introduction of pollutants and pollen into the building. For occupants with allergies, outside air could contain possible health risks. Most higher-rated filters can catch pollen (which is between 5 -11 μm) so introduction of outside air through fans, open windows and doors pose the greater risk.
Target 5 Air Changes Per Hour
Your air change rate (ACH) is a measure of how often you replace the air within a space. However, ACH is a bit misleading since one cycle doesn’t equate to 100% removal. In fact, it takes longer than you’d expect to vacate any contaminants from a room.
“When we change air in a room,” explains Lance Jimmieson, of Jackson Engineering, “we’re not magically taking out all of the air that’s there and replacing it with fresh air. It comes in, mixes and turns over, and typically mixes between perimeter and center zones. So, we’ve got to remove it.”
Jimmieson advises targeting a minimum of 5 air changes/hr (12 cycles) and bases his recommendation on CDC data (Table B.1). “Even with ten air changes an hour, i.e. every 6 minutes, it’s still going to take half an hour to get rid of any traces of an aerosol in the room, so air change rates need to be relatively high,” he explains.
Upgrade Air Filtration Systems
The choice of filter matters when trying to arrest droplets containing small contaminants like viruses. ASHRAE recommends a minimum MERV-13 grade or better for commercial buildings. MERV-13 through 16 can achieve a 95-99% average removal efficiency for particles from 0.3 to 1.0 μm.
High Efficiency Particulate Air (HEPA) filters have an even higher performance, capturing 99.97% of particles with a size of 0.3 μm. However, their superior efficiency creates more pressure drop in your system, which will reduce airflow rates and therefore system performance.
CAVEAT Pressure drops from upgrading filters can have a significant impact on your HVAC system. In fact, most managers and owners will find it too difficult or impossible to retrofit their HVAC systems with HEPA filters without a costly or significant redesign. This hurdle is why ASHRAE recommends using portable systems with HEPA filters. Also, higher grade filters are costly and single use, so expect an uptick in operating costs.
Consider UV Germicidal Irradiation
Ultraviolet germicidal irradiation (UVGI) systems use short wavelength UV-C light to kill viruses and bacteria before they’re distributed by your ventilation system. UVGI systems for HVAC are usually mercury-based lamps or LEDs. As viruses pass through the HVAC system, the lamps “inactivate” any viruses captured by high efficiency filters or that move through the AHU.
UVGI lamps contribute to air sterilization, especially where outside air flow is restricted and/or dilution efforts are insufficient. However, UV-C does have limits. Jimmieson notes that one critical restriction that’s often overlooked is particle size. “By and large, a good rule of thumb is that if you’ve got a particle size that is bigger than 5 μm then you’re going to struggle to nuke that particle with UV light.”
It’s a fact that has implications for your filtration system, since low efficiency filters allow particles greater than 5 μm to pass through. If those larger particles are hosting viruses, then they may not be neutralized by your UVGI. “You really want to position the UVGI system downstream of a good quality filter to take the lumps out of the air,” Jimmieson recommends.
In our quest to compile a list of the best FM online learning resources for 2022, we looked at several important factors. For one, we wanted a good mix of quality and convenience. Some FMs will be looking for professional certification courses, while others may only need a one-off refresher video. Therefore, we included both certifying orgs with full course work along with eLearning platforms with à la carte selections.
Next, we also wanted to list free and affordable options along with paid ones, given the budget crunch many will likely feel this year. Finally, we wanted our list to be time-saving and relevant, so we included samples from each library, catalogue and resource for your consideration. We also think these samples reflect essential skills FMs will need to future-proof their careers. With that, here are a few of the best online online education resources for FMs in 2022.
LinkedIn Learning
LinkedIn Learning is a great source for quick, easy courses for specific topics. The online learning platform has several courses on project and workspace management FMs will find helpful. Plus, you can gain some experience in more technical topics like working with BIM software. Here are some FM-related courses we recommend for 2022:
The International Facility Management Association offers full course work for various FM accreditations. However, they also have short eLearning videos for primers into specific topics. While you don’t have to be an IFMA member to buy courses or videos, you do get discounted pricing and access to other benefits. We looked through IFMA’s catalogue of videos and found these gems for 2022.
Organisational Strategy for FM Departments in an IoT World
Bombs, Suspicious Packages & Active Shooters: How Do You Respond at Your Workplace
Creating a Powerful FM Legacy
Communicating in a Crisis
FM Podcasts
Industry articles on BAS and facilities management are abundant, but podcasts are a handy FM online learning resource too. Podcasts are perfect for time-starved individuals or those with long commutes. Here are a few FM-related podcasts to subscribe to this year.
BOMI International webinars (hosted by Lorman) are a must have for 2022 FMs who need to keep up with the break-neck speed of change in the industry. Prices vary from $85USD to $200 based on the topic, and attendees can include a downloadable recording for an additional cost. Lorman’s webinar schedule only runs a few months out, so we took a look at what they had to offer for their January and February line up.
Increase Your Ability to Retain Millennials in the Workplace (Feb 8)
Taking Care of Employees Based Overseas (Feb 8)
Responding to Negative Employee Comments on the Web(Feb 28)
Recent Developments Regarding Force Majeure (Mar 2)
IFMA Knowledge Library
The IFMA Knowledge Library is an FM online learning collection of articles, presentations, white papers and podcasts, all focusing on the latest data and trends for the FM industry. There are four different access levels, which includes two free levels. IFMA members get full access to all content, but those who don’t want to commit can purchase a “Knowledge Pass” for $200USD. Here’s some free and premium IFMA content from the Knowledge Library you’ll want to check out for 2022.
Proactive Maintenance Strategies for Operational Value (Article)
Put Your Money On It: Investing in Energy Efficiency (Video)
Why Facilities Managers Should Adopt a Multi-generational Staffing Strategy (Article)
Employee Experience & the Future of Work (Podcast)
Massey University
Massey Uni offers two diplomas in facilities management available through distance learning. The Diploma in Facilities Management (DipFM) is built for new FM professionals just entering the industry who want to strengthen their skills with foundational knowledge, while the Graduate Diploma in Facilities Management (GradDipFM) is aimed at professionals holding a non-FM related tertiary qualification, such as engineering, commerce or science. Both courses are one year full-time, but can be completed part-time. Also, both offer the option to exit at certificate level on completion of four papers.
Touch screens are ubiquitous. We use them at the grocery store to check out, and at the airport to check in. They’re at visitor center kiosks, our banks, our homes and even in our cars. And today, because they’re the primary interface of smartphones, touch screens are literally in our faces for 4.2 hours every day. They are the “Black Mirror” that fans of the series will know as that part of device that reflects our image back towards us.
But despite their prevalence, few know how touch screens work. It’s not because they’re a “new” technology (they’ve been around for roughly six decades). Instead, it’s likely a failure of users to fully appreciate the ingenuity that goes into solving the unique problem of connecting humans and computers through touch. To that end, here’s a quick look on the four basic types of touch screens and how they function. But first, a little touch screen 101.
How do Touch Screens Work?
All touch screens work by creating a predictable X and Y grid pattern on the surface of the screen (Think back to the coordinate plane of your primary math class). As our fingers or stylus interacts with the grid, we introduce a disturbance. The disturbance might be a fluctuation in electrical resistance, capacitance, heat or even acoustical wave flow. The screen’s sensors then detect these changes and use them to triangulate our finger/stylus position. Finally, the sensors translate our clicks and gestures to the CPU, which executes the appropriate command (e.g., “open the app”). Simple in theory, but complex in practice.
Screen Tech Tradeoffs
Like any technology, touch screens have several cost-benefit factors, and manufacturers tailor their products to maximise specific benefits for different consumer needs. One common tradeoff for touch screens is accuracy vs cost. Typically, the more accurate the screen, the more expensive, due to the extra components or more expensive materials used. Screen clarity is another consideration. Some screen designs provide 100% screen illumination, while others adopt layered screens, which can dampen resolution and brightness. Other common screen characteristics include:
Durability vs cost
Single vs multi-touch (i.e., two or more fingers)
Finger touch vs stylus vs both
Resistance to contaminants like water and oil
Sensitivity to electromagnetic interference (EMI) or direct sunlight
High vs low power consumption
Consumers and businesses often trade less-needed features for more desirable ones. For example, facility access screens require more durability and “touch life,” with less consideration towards clarity and multi-touch, while smartphone makers need both (and more!) to compete.
Resistive Touch Screens
The most straightforward touch screen design is the resistive touch screens (RTS). These screens employ a multi-layered design, which includes glass covered by a thin plastic film. In between these two layers is a gap with two metallic electrodes, both resistive to electricity flow. The gap is filled with a layer of air or inert gas, and the electrodes are organized in vertical and horizontal grid lines. Essentially, resistive touch screens work like an electric switch. When the user presses the screen, the two metallic layers come into contact and completes the circuit. The device then senses the exact spot of contact on the screen.
RTS are low-cost and use little power. They’re also resistant to contaminants like water and oil, since droplets can’t “press” the screen. Almost any object can interact with the screen, so even thick gloved hands are usable. However, RTS usually offer low screen clarity and less damage/scratch resistance.
Capacitive Touch Screens
One screen type you’ll find on almost every smartphone is the capacitive touch screen (CTS). These screens have three layers: a glass substrate, a transparent electrode layer and a protective layer. Their screens produce and store a constant small electrical charge or capacitance. Once the user’s finger touches the screen, it absorbs the charge and lowers the screen capacitance. Sensors located at the four corners of the screen, detect the change and determine the resulting touch point.
Capacitive screen come in two types: surface and projected (P-Cap), with the latter being the common screen type for today’s smartphones and tablets. P-Cap screens also include a thin layer of glass on top of the protective film and allows for multi-touch and thin gloved use. So, they’re popular in health care settings where users wear latex gloves.
Having fewer layers, CTS offer high screen clarity, as well as better accuracy and scratch resistance. But their electrified designs put them at risk of interference from other EMI sources. Plus, their interaction is limited to fingers and/or specialised styluses.
Surface Acoustic Wave Touch Screens
Surface Acoustic Wave (SAW) touch screens use sound waves instead of electricity. SAWs have three components: transmitting transducers, transmitting receivers, and reflectors. Together, these components produce a constant surface of acoustic waves. When a finger touches the screen, it absorbs the sound waves, which, consequently, never make it to their intended receivers. The device’s computer then uses the missing information to calculate the location of touch.
SAWs have no traditional layers, so they tend to have the best image quality and illumination of any touch screen. They have superior scratch resistance, but are susceptible to water and sold contaminants, which can trigger false “touches.”
Infrared Touch Screen
Infrared (IR) touch screens are like SAW screens; in that they contain no metallic layers. However, instead of producing ultrasonic sounds, IRs use emitters and receivers to create a grid of invisible infrared light. Once a finger or other object disrupts the flow of light beams, the sensors can locate the exact touch point. Those coordinates are then sent to the CPU for processing the command.
IR screens have superior screen clarity and light transmission. Plus, they offer excellent scratch resistance and multi-touch controls. Downsides include high cost and possible interference from direct sunlight, pooled water, and built-up dust and grime.