Building automation systems (BAS) or “smart buildings”, are increasingly popular in commercial and industrial buildings. Why? Because they improve energy efficiency and reduce costs by integrating and automated systems such as lighting, HVAC, and security. While these systems of systems are often associated with larger commercial or industrial facilities, advances in technology are lowering price points enough for smaller building owners to access the benefits. But before you invest, consider the pros and cons of a building automation system.
What is an Building Automation System?
Building automation systems use a combination of sensors, controls, and algorithms to monitor and manage building systems. These systems can be integrated with a building’s existing infrastructure, such as HVAC and lighting systems, to create a centralized control system that can adjust and optimize building operations in real time. For example, a BAS can automatically adjust the temperature and ventilation in a building based on occupancy levels and outside weather conditions or turn off lights in unoccupied areas to reduce energy waste.
Building Automation System Pros
Automated building systems have the potential to significantly improve energy efficiency, reduce costs, and improve building comfort and productivity.
Greater Energy Efficiency
AS can use occupancy sensors and time schedules to control lighting and HVAC systems, ensuring that they are only running when needed and at optimal levels. By reducing energy usage during periods of low occupancy, such as nights and weekends, a BAS can help to significantly reduce energy costs.
Better Occupant Experiences
By optimizing building systems for comfort, such as temperature and lighting, BAS can help to create a more comfortable and productive work environment. This can lead to improved employee satisfaction, reduced absenteeism, and increased productivity.
Reduce Maintenance Repair and Costs
By continuously monitoring and optimizing building systems, a BAS can identify and diagnose issues before they become major problems, allowing for timely maintenance and repairs. This can help to extend the lifespan of building systems, reduce repair costs, and minimize downtime.
Real-time Analytics
One key feature of a BAS is its ability to provide real-time monitoring and data analytics. By collecting and analyzing data from building systems, such as energy usage and occupancy levels, a BAS can help building owners and managers identify areas of inefficiency and opportunities for improvement. This can help to inform future decisions around building upgrades, retrofits, and maintenance, allowing building owners and managers to optimize their operations and save money over the long term.
Energy Regulation Compliance
With energy codes and regulations becoming increasingly stringent, it is becoming more important for building owners and managers to optimize their energy usage and reduce waste. By implementing a BAS, building owners and managers can demonstrate their commitment to sustainability and energy efficiency, and potentially qualify for tax credits and other incentives.
Building Automation System Cons
Despite the many benefits of automated building systems, there are some potential drawbacks to consider.
Upfront Costs
Building owners may need to invest a significant amount of money to purchase and install the necessary hardware and software to create a fully integrated BAS. This cost can be a barrier for some building owners, particularly for smaller facilities with limited budgets.
Complex Installation
Building owners may need to work with a team of engineers and technicians to design, install, and configure the system, which can be time-consuming and require specialized expertise.
Technical Issues
While BAS systems are designed to be reliable, there is always a risk of technical issues and system failures. These issues can cause downtime and disrupt building operations, which can be costly and frustrating for building owners and occupants.
Staff Training
Adopting a BAS may require building owners to train their staff on how to use the new system. This can be time-consuming and may require additional resources to ensure that staff members are properly trained and understand how to use the system.
Security Concerns
As with any technology, there are potential security concerns with adopting a BAS. Building owners need to ensure that the system is properly secured and protected against cyber threats, as a security breach could have serious consequences for building operations and occupant safety.
While there are pros and cons to adopting an automated building system, building owners and managers should also consider the effects their decisions have on broader issues like climate change. Buildings make up an enormous amount of the world’s energy use and green house gas emissions. Reducing emissions takes collective action. Lower your building’s carbon footprint is doing your part.
As technology continues to advance, building automation systems have become increasingly popular in commercial and residential spaces. Like our vehicles and homes, many of the systems that run commercial and industrial buildings have become automated. Automation systems can make buildings more efficient, secure, and comfortable for occupants. In this beginner’s guide, we’ll explore the basics of building automation and how it works.
What is Building Automation?
Building automation refers to the use of technology to control various systems in a building, such as heating, ventilation, and air conditioning (HVAC), lighting, security, and more. Building automation systems (BAS) use sensors, controllers, and software to automate and monitor these systems, allowing for optimal performance and energy efficiency.
How Building Automation Works
Building automation systems work by collecting data from sensors that are placed throughout the building. These sensors monitor various factors such as temperature, humidity, and occupancy. The data is then sent to a controller that analyzes the information and makes decisions based on pre-set parameters. For example, if the temperature in a room is too high, the controller may turn on the air conditioning to cool the space.
Sensors like this motion detector can be connected to lighting and HVAC systems to deliver service only when spaces are occupied.
One of the key benefits of building automation is that it allows for the coordination of different systems in a building. For example, if a room is not occupied, the lights can be turned off automatically to save energy. If the room becomes occupied, the lights can be turned on and the temperature adjusted to a comfortable level. These coordinated actions can help to save energy and create a more comfortable environment for occupants.
Components of Building Automation Systems
Automation systems for buildings consist of several key components. These include:
Sensors: Sensors are used to monitor various parameters such as temperature, humidity, and occupancy. They can be installed in different parts of the building, such as the walls, ceilings, and floors.
Controllers: Controllers are responsible for analyzing the data collected by sensors and making decisions based on pre-set parameters. They can be programmed to control various systems in the building, such as HVAC, lighting, and security.
Actuators: Actuators are used to control various systems in the building. For example, they can be used to turn on the air conditioning or adjust the lighting in a room.
Software: Software is used to program and control the building automation system. It can be used to set parameters for different systems, monitor performance, and make changes as needed.
BAS components like HVAC actuators automatically adjust air flow dampers to keep rooms at comfortable temperatures.
How Does Automation Help People?
Building automation systems offer several benefits to building owners and occupants. Some of the key benefits include:
Energy Efficiency: Building automation systems can help to reduce energy consumption by optimizing HVAC, lighting, and other systems. This can result in lower energy bills and a reduced carbon footprint.
Comfort: Building automation systems can help to create a more comfortable environment for occupants by adjusting temperature, humidity, and lighting levels based on occupancy and other factors.
Safety and Security: BAS can help to improve safety and security by monitoring the building and alerting security personnel in case of any issues.
Maintenance: Automation systems can help to reduce maintenance costs by providing real-time data on the performance of various systems. This can help to identify and address issues before they become major problems.
BAS Layers
An automation system typically has three layers: management, controller, and field. The field layer is composed of devices such as sensors and actuators. These are the devices “in the field” that do the actual work of reading data and/or operating equipment.
The middle layer is the controller layer. It contains controllers, which receive the inputs from field devices, makes decisions, and relays commands to those devices.
Finally, the “top” layer is the management layer. This “supervisory layer” contains the software that manages the entire BAS and brings all controls to a single access point. The management layer usually contains graphic displays that let owners and managers easily see the status of the system or individual parts.
Graphics like these are often part of the BAS management layer. This graphic shows the various levels of three water tanks.
Challenges of Building Automation
While building automation systems offer many benefits, there are also some challenges to consider. One of the main challenges is the cost and complexity of installation and maintenance. Building automation systems can be expensive to install, and they require ongoing maintenance to ensure optimal performance. However, advances in technology are bringing down the costs of BAS systems, and many businesses and facilities now find it financially beneficial to invest in basic components and systems.
Resources
Now add to what you’ve learned. Check out these resources on the BAS basics:
Information Technology (IT) and Operations Technology (OT) are two distinct yet interconnected fields that play critical roles in modern organizations. IT deals with the use of technology to support business processes, while OT focuses on the use of technology to control and monitor industrial and commercial processes in facilities. By looking at IT vs OT systems, it’s easy to identify their major differences.
What are IT Systems?
IT systems are primarily used to support business processes, such as data storage, processing, and communication. These systems include things like enterprise resource planning (ERP) systems, customer relationship management (CRM) systems, and enterprise-wide networks. They are responsible for maintaining the flow of data within an organization, and provide important services such as email, file storage, and data analysis. IT systems are also responsible for maintaining the security of an organization’s data, including firewalls, intrusion detection systems, and encryption.
What are OT Systems?
OT systems, on the other hand, are used to control and monitor industrial processes. These systems include things like programmable logic controllers (PLCs), distributed control systems (DCSs), and supervisory control and data acquisition (SCADA) systems. They are responsible for controlling and monitoring the physical processes within an organization, such as manufacturing processes, power generation, and water treatment. OT systems are designed to operate in real-time and are often required to operate 24/7.
When we look at IT vs OT systems, trends show they are increasingly being integrated to improve the overall efficiency of companies and facilities. For example, a building owner might use data from an OT system to optimize their HVAC systems, or an energy company might use data from an IT system to identify and respond to potential power outages.
The difference between IT and OT system components. Note that IT and OT must interface with one another.
Network Security
One of the major differences between IT and OT is in the level of security required. IT systems are typically more connected to the internet; hence they are more exposed to cyber threats. These systems need to comply with industry-specific standards like the Payment Card Industry Data Security Standard (PCI-DSS), HIPAA and SOC2. Organizations need to maintain regular backups, have intrusion detection and prevention systems, as well as have strong and regularly updated access controls in place.
OT systems on the other hand, are typically more isolated from the internet and have fewer connections to external networks. These systems need to comply with standards like IEC 62443 which are specific to industrial environments. Because of the real-time nature of their operations, organizations need to have redundancy in place and maintain backups that can be restored within minutes, have detailed incident response plans, as well as maintain physical security of the systems.
Conclusion
IT and OT systems play critical roles in modern organizations, with IT systems primarily focused on supporting business processes and OT systems focused on controlling and monitoring industrial processes. The two fields are becoming increasingly integrated, with organizations leveraging data from both types of systems to improve overall efficiency. However, they are also vastly different in terms of the level of security required, with IT systems being more exposed to cyber threats, and OT systems being more isolated and needing to comply with industrial specific standards.
Although often overlooked by building managers and engineers, data schemas are essential to the efficient building management, data analysis and system automation. That’s because schemas are the building blocks of effective database management. Without them, you foreclose your property’s potential to save energy, adopt tech, and compile valuable operational data that make your buildings run at more efficiently and at lower costs. But what are schemas and how do they work?
Database Schema Basics
Databases of all kinds must be organized in pre-determined ways. Otherwise, it’s impossible to store and retrieve data in any workable sense. Think of a schema as a naming standard “language” for how you write, store, and retrieve the information about your building—from the status of its assets to the historical data around energy use.
Just like any language, schemas have rules and conventions. Language has rules around naming things (e.g., noun, verb, etc.) and grammar (subject + verb + director object). If we don’t follow the rules, communication turns into confusion or completely breaks down. In the same way, database schema standards outline how things are stored, what they’re called, and how they’re related (i.e., relational database).
Schemas deal in metadata or “data about data”. For example, books have metadata in the form of their title, author, publisher, or call number. In the same way, buildings have data about their assets, such as asset name, location, site, or type.
For managers and engineers, schemas make recording and managing your asset database easier by ensuring your library is mapped, tagged and organized in a way that’s easily understood by machines and software. So, these standards are intended for both building owners and developers, ensuring both parties are speaking the same language.
Too often, managers and engineers use schemas customized to their site or ad hoc naming conventions that get lost when buildings change and people move on. Such informality creates confusion over time, but maintaining a standard schema ensures your software, BMS and assets can always communicate effectively.
Like advanced schemas, pictures are worth a thousand words.
Basic vs Advanced Schema
Some schemas are basic, recording only a few pieces of metadata (e.g., asset name, location, serial number). Other schemas are complex, recording many pieces of data. The more complex your schema, the more descriptive it is, and a more description means a “deeper” more powerful database, just as a long sentence is more descriptive than a short one. For example, consider the following two sentences:
“The dog fetched.”
“The black Labrador fetched the yellow tennis ball from its toy box.”
What are the major differences between these two sentences, and (more important) what can we do with the second sentence that we can’t do with the first?
For one, Sentence 2 contains more descriptive words (“black Labrador” “yellow” “toy box”), so we have a better understanding of the context. Second, the shorter sentence lacks an object. We know the dog fetched, but we don’t know what it fetched. The second sentence tells us—it’s the ball. In the longer sentence, we’re even given information about the situation (i.e., the Lab has a toy box). More importantly, Sentence 2 creates a relationship between the subject and the object. We can say, therefore, that the longer sentence is “relational” in that it describes how one thing (the dog) is related to another (the ball), which is related to another thing (the toy box).
These same differences exist between informal and standardised schemas. Longer, more descriptive schemas provide more context and meaning around a building asset. They’re also relational, in that they describe how one asset (e.g., temperature sensor) is related to another (e.g., AHU). Consider these two naming schemas for a temperature sensor housed on Level 9 of a hospital.
Examples of basic and advanced standard schemas
While the basic schema lists only the location (LV09) and asset name (TempS), the advanced schema extends the description to include the building, system, asset type, point type, specific location, and the device class. With these added details, we now have a relational description of the sensor. For example, we know it is part of the mechanical (M) system and part of an AHU. Therefore, we can say Schema 2 is part of a relational database, and that it gives us a greater understanding of the asset and its place in the system.
Overall, Schema 2 gives us more context and meaning than Schema 1, and we can use this information to learn more about how our buildings operate. Once we extend this schema strategy to our entire building, we have a powerful way to analyze its contents and functional efficiency.
Schema Benefits
There are many benefits to adopting and maintaining a standard database schema. Here are a few of the most important.
Software Deployment
Standard schemas create a common lexicon and database structure for software developers to use. Adopting a standard naming schema makes software deployment and management much simpler. Developers and building systems benefit from a common, predictable set of rules and naming conventions. Such standards make software development and deployment easier and cheaper because both stakeholders are working from a shared data structure. The developer can simply bolt their software package to your system, and everything works out-of-the-box.
Advanced Queries and Dynamic Lists
Conventional BMS pages are static. Their queries are hard-baked, with pre-built graphics that deliver data around points such as fault detection, temperatures, run speeds and statuses. They are “static” in that their queries never change. Your BMS will only “ask” specific questions about your system. They may be important questions, but they are, to be sure, limited. Contrary to their appearances, however, buildings aren’t static with respect to the data they produce, and managers and engineers often need to run queries and generate dynamic lists that exist outside the BMS purview. Using a relational, standardised schema allows this limitless flexibility.
For example, say you suspected one of your AHUs was starting to fail. You could run a query that identified all room temperature sensors that have been reading above 21 degrees for the last 24-hours for that specific AHU. If your schema is relational, it understands which specific sensors to target. You could then upload the data to a dynamic page to help troubleshoot performance issues. Dynamic lists like these can improve predictive failure and shorten downtimes.
Boilers in a mechanical room.
Asset Replacement
With a standard relational schema, you can identify an asset’s effect on the system and impact to service. For example, a standard schema can show you the effects to other systems when you plan to replace a failed actuator. Before work begins, you can ask questions like: “Will replacing the actuator stop chilled water to the whole building or just the data center?” or “How will the replacement affect Tenant X, Y and Z?” Such insights give you and your service engineers the right information for estimating costs, cutting downtime, and ensuring better tenant outcomes.
Updating Building Data
Buildings go through many evolutions in their life cycle, and these changes affect your asset database. Standard relational schemas make updating metadata much easier and more accurate. Recording changes only requires updating one specific piece of data, like a room number or new part. After that, your system automatically adjusts names and relationships, both upstream and downstream. Standard schemas cut the time and costs of updating asset databases.
Popular Schema Standards
Today’s most popular standard schemas differ in their approach, but all attempt to standardise asset description and storage to aid interoperability and software deployment. Project Haystack is a tag-based schema focusing on streamlining operation between smart devices within buildings, homes, factories, and cities. The Brick Ontology standardises both asset labels and connections, allowing the user to create a relational database.
Conclusion
It’s difficult to make big data work for you without first putting it into a standard structure. Schemas are that structure—they’re the digital architecture of your building systems. By building your asset database with standard schema, you’re ensuring your building, tenants and occupants benefit from future invocations such as advanced analytics, AI, machine learning, and cloud computing. These are the future of building operations and facilities management. Once all buildings graduate to smart status, they’ll be connected to everything, and proptech will help managers do everything from calculating asset depreciation to managing carbon emissions.
Properties need effective cybersecurity measures. Cybercriminals don’t just attack high profile companies and governments; they target small to medium businesses too. Computer viruses range from annoying adware infiltrating your browser to costly ransomware attacks. In 2021 the world saw a 105% jump in ransomware attacks. Healthcare alone saw a 755% increase! Businesses are paying out billions each year to save their proprietary and/or customer data—and paying only makes things worse.
The sharp rise in ransomware has forced building owners to take a serious look at their IT infrastructure. This is alongside adapting to the challenges of the pandemic and managing a remote workforce. Interestingly, some security experts point to remote work as one cause for the increase in ransomware. Since employees are no longer behind corporate firewalls, their home-based laptops and mobile devices become “attack vectors” for gaining entry to company networks.
Remote entry points are also an issue for building control systems. As buildings become more connected and “smart”, the threat of data breaches increases. That’s because system integration, IoT devices, and building automation systems (BAS) increase connectivity and wireless operation. It’s a problem the U.S. government has known about since 2015 after the GAO warned of a 74% jump in cyber incidents involving government-owned industrial control systems.
Building control systems like BAS/BMS connect hundreds of devices and sensors that make up systems like fire, access, HVAC, electrical, and lift. Connectivity makes it easier for cybercriminals to make their way to more sensitive data because there are more paths to follow. Wireless and IoT devices make networks vulnerable to remote Wi-Fi exploits and password hacks. These potential data breaches and financial losses from malware are why property teams need to practice effective cybersecurity habits.
Setup Multiple User Accounts
One good security habit to adopt is proper account creation and assignment to your team. To save time and hassle, some building managers create and share one master admin account amount their team members. It’s tempting when someone needs to make a few quick changes to simply email your login and password. However, this puts your BAS at risk of cyberattack if those credentials are misplaced or abused. To be cyber safe, create both admin and user level accounts and assign them to each employee.
Almost all BAS software lets you create multiple accounts and at various levels of access. Individual account creation does three key things:
It ensures inexperienced members aren’t given access to critical controls.
It makes sure user actions are recorded by the system.
It helps users work more effectively.
Modern BAS systems track what users do, which is helpful when things in the system are improperly changed. If everyone signs into the system with the same account, then you can’t tell who did what and when. This can slow down repairs and troubleshooting because you must rely on faulty human memory instead of an accurate digital record. Also, when inexperienced or new users sign into an admin account, they may spend an inordinate about of time searching for the tool or feature they need. User-level account interfaces are simplified for this reason. Too many options can tank productivity by forcing workers to waste time navigating a complex interface looking for a single item.
Password Creation
Creating strong passwords is one of the most impactful cybersecurity habits you can adopt. Too often folks continue to use highly predictable pass codes (e.g., “123455” or “Qwerty”) to secure their most sensitive data. What’s worse, most of us also use these same flimsy passwords for all our accounts. It’s behavior that’s too predictable, and predictability is the Achille’s Hill of security.
Make sure your team knows password best practices. When it comes to password creation, length and complexity matter. Passwords should be at least 8 characters long, include special characters (e.g., @!&), and numbers. The longer the password the better; however, there’s a limit to how many characters a person can hold in long term memory. To combat the memorization problem, use passcodes instead.
Passcodes are acronyms made from random words or long sentences. To create a passcode, use the first letter of each word to form your password. For example: “My cat whiskers is 3 years old and likes to have her belly rubbed.” This sentence (which is personal and easy to remember) becomes the password: “mcwi3yoalthhbr”. Then, swap out a few special characters, and you’re good to go.
If passcodes seem too complex, make your life 100% easier by simply using a password manager. These cloud-based apps create and store complex passwords in the cloud for you. They will even fill in the form fields for you, saving you valuable time. Most apps have free or inexpensive annual plans, so investment is minimized, while time savings and security are maximized.
Suspicious Link Detection
A building’s devices aren’t its only weak spots. In fact, occupants are often the major sources of malware. Cybercriminals can use social engineering to trick employees into opening phishing emails and navigating to fake websites. The tactic is called a “pharming attack” and is a common way for hackers to steal an employee’s username and password. The fake website looks and feels like the authentic one, but it’s a duplicate. Employees unwittingly enter their username and password, which is recorded and used to gain entry to the account.
Hackers design phishing emails and fake websites to look like official corporate digital assets, often using the same branding, logos, language, etc. Most are convincing enough to fool an employee who’s under a bit of stress and/or not paying attention. However, there are a few tell-tale signs to look for:
Salesy Language. Cybercriminals often employ high-pressure sales language or scare tactics. Phishing emails may claim “suspicious activity” or fake “charges” to user accounts to entice holders to hastily move to fix “issues” without first confirming the source of the emails.
Grammar mistakes. Often cybercriminals don’t speak your native language, so look for any grammar mistakes or misspellings. These are extremely rare in authentic corporate emails and are a sure sign of a fake.
Pixelated logos. Hackers use official logos to trick email recipients, but often these logos are hastily copied and pasted from websites and may be incorrectly sized resulting in pixelated or strange looking images.
Strange URLs. URLs have two parts: the hypertext (e.g., “Contact Us”) and the address (e.g., https://7nox.com/). Never trust the hypertext to tell you where the link goes. Always check the URL address. To do this, hover your cursor over the text without clicking and read the URL displayed in the bottom left corner of your browser. The URL should contain the company’s address. If it’s simply a long string or strange characters, it may be a pharming attack.
BAS Backups
Make sure your BMS provider backs up your BAS/BMS system on a regular basis. Backups keep your system secure against ransomware attacks, which rely on businesses not having copies of their data. Plus, system backups ensure redundancies when your system goes down or when you shut your building down for changes. If controller settings aren’t “persistent” they may not be saved during a reboot of your BMS. It’s critical that you have backups to ensure these changes are saved.
Conclusion
While building automation and connectivity brings many wonderful things to the built environment, they do require owners and managers to make their IT and OT more resilient. However, without proper training of staff, these technical efforts may prove fruitless. In cybersecurity, humans are often the weakest link. That’s why cybersecurity shouldn’t be simply a training box to tick at the end of the year. It should be an ongoing attitude and effort by all employees. Focus your training on seasoned staff, who may be laxer in their habits, and on newcomers who may have few habits at all.
After the former-company-known-as-Facebook rebranded itself in late 2021 to Meta, much of the world discovered the “metaverse”—the next generation of human connectivity that would fundamentally transform how we socialize and work.
According to Zuckerberg’s vision, the metaverse will be a place where social interactions are completely virtual, with self-created and customizable avatars interacting in ways that seem so real, we will easily take them as such. The new digital reality would affect work too, allowing workers to be at the “office” without leaving their home or changing out of their sweatpants. Remote workers no longer need to worry their physical office cohorts will race ahead, grabbing the next promotion or swanky project. Everyone would work in the same “space” regardless of their physical location.
The move to an immersive digital social life will certainly have massive implications for society, but building a new digital Agora for the modern world only scratches the surface of what the metaverse will be. That’s because its value extends beyond video games, social media, and the workplace. In fact, the sector to feel the most impact of these new virtual spaces will likely be today’s very real built environments.
Building Digital Twins
One key aspect of the metaverse for the built environment is the digital twin—a virtual doppelganger of a physical object or process. The notion of such a digital double is several decades old and the culmination of advances in 3D/BIM software, machine learning, and virtual technology. While architectural drawings have rendered 2D renderings of buildings for hundreds of years, 3D software added that extra dimension. Later, virtual reality would make the fourth dimension (time) possible. These advances set the stage for modeling physical processes like the human body or providing virtual walkthroughs of spaces like residential and commercial buildings.
However, digital twins serve a more important and practical purpose than visual mimicry; they attempt to model reality itself. To do this, digital twins must account for as many data points as possible. This includes every object, process and system that exists within a building—from the largest HVAC plant to the smallest occupancy sensor. All digital building systems function within a virtual world dynamically modeled to mimic the dimensions of time and space and natural forces. In short, the virtual world contains the same physical limitations as its physical counterpart.
The advantage of a digital twin, whether it be a building or an entire city, is that you can make changes and see what happens without doing it for real. This can be advantageous when time and costs are too great for real-life recreation or when impractical or impossible. Climate scientists, for example, use digital twins of the Earth’s weather systems to make predictions about the effects of global warming.
The more data points that make up your digital twin, the more accurate your simulations. In this way, data points function much like pixels that make up a screen, in that the more you can pack into a model, the higher the “resolution” and more life-like images you get.
However, such huge buckets of data take enormous amounts of computational power to process and manage. That’s where artificial intelligence and machine learning have helped give birth to the metaverse. Sophisticated algorithms do much of the “thinking” for us—locating patterns, making connections, running simulations and spitting out the results. Without them, modeling of systems is a rudimentary process, and it’s only relatively recent that we’ve been able to handle enough data to represent a virtual facsimile of complex physical processes and systems.
Helping Speed Up Building Decarbonization Adoption
As the metaverse takes its first steps, markets are already pricing in the tech’s potential to transform the built world. From a current global market size of $3.1 billion in 2020, experts project the digital twin market will reach $48.2 billion by 2026. Such growth is why some engineers, architects and entrepreneurs are looking to the metaverse and AI technology to help lower carbon emissions. In fact, an Ernst and Young study found that digital twins can reduce a building’s carbon emissions by half.
Founder and CEO of Cityzenith, Michael Jansen, oversees a digital twin platform that’s leading the push to decarbonize entire cities using metaverse technology. Recently Jansen hosted a live event laying out the current challenges to building decarbonization and how investing in digital twins can speed up green capital investments in the U.S. One pain point for property owners is retrofitting costs, which the CEO estimates at $4 to $7 USDs per square ft ($21 to $75 per sq m). “When you consider the fact that building owners spend about $2.10 per square foot on energy annually, it’s a large number,” Jansen states.
Another hurdle to building decarbonization adoption is the inherent conflict between the short-term gains investors demand vs the long-term investment that sustainable retrofitting requires. “The payback periods on typical [green] retrofits can be 10 to 15 years,” Jansen explains. “Those at the top of the investment pyramid typically look for returns within three to five years. As a result, a lot of these investments just don’t happen.”
While Jansen admits there are many challenges to green investment and adoption, he believes data is the obvious answer, at least for the short term. But buildings and cities contain thousands of software platforms, untold sensors, and BMS systems sending and receiving gigabytes of data through the air and over wires. It’s understandable that building managers can often feel as if they’re drowning in a sea of data and the digital tools that fill it.
Jansen claims it’s this “chaos of tools” that’s slowing building decarbonization efforts throughout the market. However, it’s understandable property owners would sidestep solving the issue of data glut, especially given the more immediate threats like higher construction costs, supply chain issues, swelling energy prices, and a shrinking demand for commercial office spaces.
Still, the Cityzenith CEO is correct in the assumption that funneling the increasing volume of data streams into a singular control is a desired outcome for most property and city managers. In fact, it’s this same consolidating impulse that’s motivating the move to integrated systems and open protocols within BMS technology today. Consolidation certainly increases data points, which is what digital twins need to be effective.
What’s needed is a “system of systems,” Jansen says. “The purpose of building a kind of metaverse around all of this…was to allow all these decarbonization processes to happen in one common place. So, all that activity could be studied and simulated before anybody actually spends a dollar. We use digital twins to predict energy consumption and financial outcomes to help drive down capital risk and increase adoption.”
Metaverse for Asset and Risk Management
While digital twins have numerous upsides for building decarbonization and efficiency, they can also help property owners and managers safeguard their investments. With aggregated data from building systems, equipment, and real-time sensors, digital twins can run physics-based models built on “what-if” scenarios.
Building and city managers can ask energy-related questions like “What if we bought 10% more solar and wind energy?” or “What if we generated more power on-site with roof-top solar array?”. After running such scenarios through a digitized property, owners would have a more accurate picture of the financial and operational impacts before committing. More importantly, they could easily tweak their input data until the outcomes fall within acceptable limits.
By using digital twins to accurately see future outcomes, property managers can also bolster their risk management. “What-if” statements can also apply to emergency situations like pandemics, natural disasters, and social upheaval. During COVID, many property owners scrambled to adjust to sudden lockdowns, indoor air quality demands, new hygiene mandates, and occupancy management challenges. Digital twin simulations of these variables could have better prepared owners and managers for the challenges while saving time, money, and possibly lives.
Sources:
“Cityzenith’s real world metaverse for decarbonization”. Published April 21, 2022, accessed April 28, 2022. https://youtu.be/l0L_7gwguoA
“Everything Facebook revealed about the Metaverse in 11 minutes”. CNET. Published October 29, 2021. Accessed April 26, 2022. https://youtu.be/gElfIo6uw4g