The most difficult part of creating short videos isn’t the production or sharing. It’s coming up with effective content ideas. One easy way to generate engaging content is to use a common category as a guide. Here are some popular categories that work well on most platforms, as standard corporate posts or paid ads.
One limitation you may run into is the maximum video length for each app. As of the time of this writing, the following max time limits apply for the following platforms:
TikTok: 10 Minutes
Instagram Reels: 90 seconds
YouTube Shorts: 60 seconds
If your video concept will require more than a minute, it probably isn’t practical for a YouTube Short.
1. Behind-the-Scenes
Show a glimpse into your daily operations and behind-the-scenes tour. This could include showcasing your team working on projects, setting up equipment, or testing systems. Behind-the-Scenes also work well for events. If your company attends industry events, trade shows, or conferences, capture moments from these events and share them. This can create excitement and showcase your company’s involvement in the industry.
2. Before-and-After Transformations
Highlight the transformational power of your work by sharing videos that show “before” and “after” shots of projects you have completed. This can be particularly captivating if you’re working on visual installations or upgrading systems.
3. Quick Tips and Tutorials
Educate your audience by sharing short, informative videos that provide tips and tutorials related to your business or industry. For example, you could explain how to set up a specific type of BMS or offer troubleshooting advice.
4. Product Demos
Showcasing your products in action is a great way to engage with your audience. Demonstrate how your products work, highlight their unique features, and explain their benefits.
5. Employee Spotlights
Introduce your team members through short videos that highlight their roles, skills, and personalities. This humanizes your brand and helps your audience connect with the people behind the company.
6. Client Testimonials
Share short clips of satisfied clients discussing the positive impact your services have had on their businesses or lives. This can help build trust and credibility among your audience.
7. Q&A
Take questions from your followers and answer them with another video. Q&As give your audience valuable information, creates a direct connection with them, and addresses their immediate concerns.
8. Fun and Creative Projects
Showcase unique or creative projects you’ve worked on that go beyond your traditional work. For example, if you’ve integrated systems into an immersive art installation or a smart home with innovative features, capture and share those moments.
9. Industry Trends and Insights
Share your thoughts and insights on current trends and developments in the systems integration industry. This positions you as an expert and keeps your audience informed about the latest advancements.
10. Collaborations
Collaborate with other content creators or businesses in related fields to create engaging and mutually beneficial content. This can help expand your reach and bring new perspectives to your audience.
11. Company Culture and Employee Spotlights
Highlight your company culture and introduce your team members to your audience. This humanizes your brand and fosters a connection with your followers. Showing off your company culture also aids in employee recruitment.
12. User-Generated Content
If you want to get your audience hooked on short-form video content, get them to create their own! Encourage your audience to make short-form videos featuring your products. Social media advertising can be much more effective when it features user-generated content (UGC), whether it be product reviews or DIY tutorials.
Bonus: Popular Topics
Popular short form video apps consistently feature specific topics and genres that are popular with users. Mix these topics with the above categories to create engaging content unique to your brand. For example, you could showcase an access control project (Behind-the-Scenes) that made a building more accessible to folks with visual impairment (Social Responsibility).
Sustainability and Social Responsibility
If your company has a strong commitment to sustainability or social responsibility, create videos that highlight your initiatives. Share your efforts to reduce your carbon footprint, support charitable causes, or make a positive impact on society.
DIY and Life Hacks
Share creative DIY projects or life hacks that are related to your products or industry. This can provide value to your audience while promoting your brand.
Humor and Entertainment
Don’t be afraid to inject humor and entertainment into your videos. Create light-hearted content that resonates with your target audience and makes them smile.
Education
Create informative and educational content related to your industry. Share tips, tricks, and insights that can help your audience learn something new or solve a problem. During anniversaries of important dates, share a historical fact about your industry that’s interesting.
Challenges and Trends
Participate in popular challenges and trends that are relevant to your industry or brand. Put your own spin on these trends to showcase your company’s personality and creativity.
Remember to keep your videos short, engaging, and visually appealing. Add music, captions, or other effects to make your content stand out. Also, don’t forget to use relevant hashtags and engage with your audience by responding to comments and participating in trends and challenges.
Building automation systems (BAS) or “smart buildings”, are increasingly popular in commercial and industrial buildings. Why? Because they improve energy efficiency and reduce costs by integrating and automated systems such as lighting, HVAC, and security. While these systems of systems are often associated with larger commercial or industrial facilities, advances in technology are lowering price points enough for smaller building owners to access the benefits. But before you invest, consider the pros and cons of a building automation system.
What is an Building Automation System?
Building automation systems use a combination of sensors, controls, and algorithms to monitor and manage building systems. These systems can be integrated with a building’s existing infrastructure, such as HVAC and lighting systems, to create a centralized control system that can adjust and optimize building operations in real time. For example, a BAS can automatically adjust the temperature and ventilation in a building based on occupancy levels and outside weather conditions or turn off lights in unoccupied areas to reduce energy waste.
Building Automation System Pros
Automated building systems have the potential to significantly improve energy efficiency, reduce costs, and improve building comfort and productivity.
Greater Energy Efficiency
AS can use occupancy sensors and time schedules to control lighting and HVAC systems, ensuring that they are only running when needed and at optimal levels. By reducing energy usage during periods of low occupancy, such as nights and weekends, a BAS can help to significantly reduce energy costs.
Better Occupant Experiences
By optimizing building systems for comfort, such as temperature and lighting, BAS can help to create a more comfortable and productive work environment. This can lead to improved employee satisfaction, reduced absenteeism, and increased productivity.
Reduce Maintenance Repair and Costs
By continuously monitoring and optimizing building systems, a BAS can identify and diagnose issues before they become major problems, allowing for timely maintenance and repairs. This can help to extend the lifespan of building systems, reduce repair costs, and minimize downtime.
Real-time Analytics
One key feature of a BAS is its ability to provide real-time monitoring and data analytics. By collecting and analyzing data from building systems, such as energy usage and occupancy levels, a BAS can help building owners and managers identify areas of inefficiency and opportunities for improvement. This can help to inform future decisions around building upgrades, retrofits, and maintenance, allowing building owners and managers to optimize their operations and save money over the long term.
Energy Regulation Compliance
With energy codes and regulations becoming increasingly stringent, it is becoming more important for building owners and managers to optimize their energy usage and reduce waste. By implementing a BAS, building owners and managers can demonstrate their commitment to sustainability and energy efficiency, and potentially qualify for tax credits and other incentives.
Building Automation System Cons
Despite the many benefits of automated building systems, there are some potential drawbacks to consider.
Upfront Costs
Building owners may need to invest a significant amount of money to purchase and install the necessary hardware and software to create a fully integrated BAS. This cost can be a barrier for some building owners, particularly for smaller facilities with limited budgets.
Complex Installation
Building owners may need to work with a team of engineers and technicians to design, install, and configure the system, which can be time-consuming and require specialized expertise.
Technical Issues
While BAS systems are designed to be reliable, there is always a risk of technical issues and system failures. These issues can cause downtime and disrupt building operations, which can be costly and frustrating for building owners and occupants.
Staff Training
Adopting a BAS may require building owners to train their staff on how to use the new system. This can be time-consuming and may require additional resources to ensure that staff members are properly trained and understand how to use the system.
Security Concerns
As with any technology, there are potential security concerns with adopting a BAS. Building owners need to ensure that the system is properly secured and protected against cyber threats, as a security breach could have serious consequences for building operations and occupant safety.
While there are pros and cons to adopting an automated building system, building owners and managers should also consider the effects their decisions have on broader issues like climate change. Buildings make up an enormous amount of the world’s energy use and green house gas emissions. Reducing emissions takes collective action. Lower your building’s carbon footprint is doing your part.
AI and machine learning (ML) are often used interchangeable, but they’re not technically the same thing. However, the difference is smaller than you think, and once you understand it, you’ll never mistake the two again. The following is a very basic explanation and omits many technical aspects of AI and ML which go beyond the scope of the intended audience. The definitions and examples attempt to lay a foundation for further exploration around these topics.
Artificial Intelligence: The Entire Robot
Artificial intelligence (AI) is a broad term that refers to creating machines that can perform tasks that normally require human intelligence. Examples of such tasks include visual perception, speech recognition, decision-making, and language translation. There are many subsets and subfields of AI, each of which tries to solve a specific problem and/or takes a different approach to creating “intelligence”. Here are the five most recognized subsets of AI:
Natural Language Processing(NLP) focuses on enabling machines to understand, interpret, and generate human language. NLP is used in applications such as chatbots, voice assistants, and language translation. ChatGPT is an NLP.
Computer Vision is concerned with enabling machines to interpret and understand visual data from the world around them. Computer vision is used in applications such as object detection or facial recognition. Autonomous vehicles, like some Tesla models, use computer vision.
Robotics develops machines that can physically and autonomously interact with the world around them to perform tasks like assembly line work or rescue operations. Boston Dynamics focuses on robotics.
Expert Systems are designed to mimic the reason-based decision-making ability of an expert in a particular field, such as medical diagnosis or financial analysis. Expert systems are why you keep hearing about AI lawyers defending people in court.
Machine Learning involves feeding data into a machine learning algorithm and allowing it to learn from that data in order to make accurate predictions or classifications about new data.
So, ML is a subset of AI. That’s the first big difference to note. While AI is a term that encompasses a wide range of technologies and techniques, ML is a specificapproach to building AI systems.
It’s helpful to think of AI as the “entire robot”—a fully autonomous machine capable of thinking and acting like a human. However, each subset is only one part of the entire robot. Robotics attempts to develop the “body” for interacting with the environment. Computer vision gives the robot the ability to make visual sense of its world. NLP arms it with the power to communicate. ML bestows the faculty of learning. And expert systems send it to university. It’s a true Frankenstein’s monster of disparate parts, but when brought together will finally realize the goal of AI.
What’s Machine Learning?
You hear a lot about ML because it’s a critical step in creating the entire robot. Almost everything we consider to be alive must be able to learn. Birds do it. Bees to it. Heck, even amoebas do it. But despite its ubiquity in the world of the living, learning is incredibly complex. Therefore, ML is taking on one of the biggest challenges, but it’s a triumph that offers the biggest ROI. Once we create a machine that learns, we can train it to make better decisions. So how do you create a machine to learn?
ML uses statistical algorithms to enable machines to learn from data and improve their performance on specific tasks over time. ML algorithms analyze large amounts of data to identify patterns, which it uses to make predictions or decisions on new data. Like humans, ML is a process that requires that machines be “taught” by exposing them to information.
ML Example: House Price Estimator
Suppose you wanted to create a ML learning algorithm that predicts the price of a house based on its size and location. You would need two sets of data: a training set and a test set. First, we create a training set of data composed of recently sold houses with their sale price and location.
The ML then processes the training data to look for patterns. After some processing, let’s say it “learned” the following “rules”:
Houses larger than 2,000 sq ft sell for > $200K
Houses less than 2,000 sq ft sell for < $200K
Houses within 5 miles of the airport sell for < $100K
Homes within 5 miles of the lake sell for > $300K
The algorithm could then use this knowledge to predict the price of a house outside the training dataset (i.e., the test set). For example, a house that is:
2,500 sq ft and 3 miles from airport.
Since the new house is more than 2,000 sq ft, the algorithm would then apply the “> $200K” rule, but since the it’s also less than 5 miles of the airport, it would apply the “<$100K” rule. Therefore, the algorithm’s prediction would likely be “$150K”.
Next, the ML algorithm checks its guess against the actual price, which is $170K. It now has a $20,000 discrepancy it needs to resolve. It checks for more patterns and learns that, as houses of equal size get closer to the airport, they decrease in price. Through some calculations, the program can determine the changes in price by proximity and apply the data as a weighted value in its next prediction. For example, maybe each mile closer to the airport equates to a 10% decrease in price.
The machine uses this constant process of guessing and checking (called backpropagation) to improve its predictions. The more iterations and inputs, the “smarter” the algorithm gets.
“So what?”, you might ask, “Isn’t this simple logic? Why do we need a machine to do this?” Well, for one, ML can sift through data, find patterns, and test its guesses against real world data at an astonishing rate. In short, it can “learn” much quicker than humans. For another, it can juggle many more parameters than we ever could, so its guesses will inevitably we more accurate over time.
Think about all the factors that go into the price of a house besides size and location. There’s the house’s age, condition, number of rooms, the market conditions, and seller motivation just to name a few. But there are other less typical considerations like current interest rates, lot locations, or roof type. When you drill down further, you find that the real number of factors is enormous. Few sellers place a critical role on the color of a house when calculating an asking price, but what if it mattered more than we thought? What about the history of the house or the future of the neighborhood where it resides? The better our predictive capabilities, the more important these “lesser” considerations become.
ML can iterate much faster and with greater detail than we can, making it more efficient at locating “hidden” patterns. What if dark-colored houses sold for higher prices than light-colored ones? Maybe houses with more east-facing windows were cheaper than more west-facing ones. Machine learning can consider all these factors and then some—and do it in real time.
Finally, imaging adding to this learning algorithm the ability to search for, monitor, and collect house price information for a large region of the country. It would be a fully autonomous learning and predicting machine that would only get smarter the longer it worked. That’s where ML is at today.
Conclusion
It’s easy to see how ML learning algorithms are a game changer for humanity. Their application to knowledge-based work of every kind is almost limitless. What’s AI developers are attempted is the automation of thinking itself. Translate these advantages to building automation, and it’s easy to see how ML will transform the built environment. Imagine AI that could plan your building’s HVAC setpoints a week in advance based on a weekly weather forecast and price predictions for energy costs. What about a FDD system that could predict chiller failure with 98% accuracy?
As technology continues to advance, building automation systems have become increasingly popular in commercial and residential spaces. Like our vehicles and homes, many of the systems that run commercial and industrial buildings have become automated. Automation systems can make buildings more efficient, secure, and comfortable for occupants. In this beginner’s guide, we’ll explore the basics of building automation and how it works.
What is Building Automation?
Building automation refers to the use of technology to control various systems in a building, such as heating, ventilation, and air conditioning (HVAC), lighting, security, and more. Building automation systems (BAS) use sensors, controllers, and software to automate and monitor these systems, allowing for optimal performance and energy efficiency.
How Building Automation Works
Building automation systems work by collecting data from sensors that are placed throughout the building. These sensors monitor various factors such as temperature, humidity, and occupancy. The data is then sent to a controller that analyzes the information and makes decisions based on pre-set parameters. For example, if the temperature in a room is too high, the controller may turn on the air conditioning to cool the space.
One of the key benefits of building automation is that it allows for the coordination of different systems in a building. For example, if a room is not occupied, the lights can be turned off automatically to save energy. If the room becomes occupied, the lights can be turned on and the temperature adjusted to a comfortable level. These coordinated actions can help to save energy and create a more comfortable environment for occupants.
Components of Building Automation Systems
Automation systems for buildings consist of several key components. These include:
Sensors: Sensors are used to monitor various parameters such as temperature, humidity, and occupancy. They can be installed in different parts of the building, such as the walls, ceilings, and floors.
Controllers: Controllers are responsible for analyzing the data collected by sensors and making decisions based on pre-set parameters. They can be programmed to control various systems in the building, such as HVAC, lighting, and security.
Actuators: Actuators are used to control various systems in the building. For example, they can be used to turn on the air conditioning or adjust the lighting in a room.
Software: Software is used to program and control the building automation system. It can be used to set parameters for different systems, monitor performance, and make changes as needed.
How Does Automation Help People?
Building automation systems offer several benefits to building owners and occupants. Some of the key benefits include:
Energy Efficiency: Building automation systems can help to reduce energy consumption by optimizing HVAC, lighting, and other systems. This can result in lower energy bills and a reduced carbon footprint.
Comfort: Building automation systems can help to create a more comfortable environment for occupants by adjusting temperature, humidity, and lighting levels based on occupancy and other factors.
Safety and Security: BAS can help to improve safety and security by monitoring the building and alerting security personnel in case of any issues.
Maintenance: Automation systems can help to reduce maintenance costs by providing real-time data on the performance of various systems. This can help to identify and address issues before they become major problems.
BAS Layers
An automation system typically has three layers: management, controller, and field. The field layer is composed of devices such as sensors and actuators. These are the devices “in the field” that do the actual work of reading data and/or operating equipment.
The middle layer is the controller layer. It contains controllers, which receive the inputs from field devices, makes decisions, and relays commands to those devices.
Finally, the “top” layer is the management layer. This “supervisory layer” contains the software that manages the entire BAS and brings all controls to a single access point. The management layer usually contains graphic displays that let owners and managers easily see the status of the system or individual parts.
Challenges of Building Automation
While building automation systems offer many benefits, there are also some challenges to consider. One of the main challenges is the cost and complexity of installation and maintenance. Building automation systems can be expensive to install, and they require ongoing maintenance to ensure optimal performance. However, advances in technology are bringing down the costs of BAS systems, and many businesses and facilities now find it financially beneficial to invest in basic components and systems.
Resources
Now add to what you’ve learned. Check out these resources on the BAS basics:
Heating, ventilation, and air conditioning (HVAC) systems are a critical component of any building’s infrastructure. They are responsible for maintaining indoor air quality and ensuring a comfortable environment for building occupants. However, HVAC systems can also be a significant source of energy consumption and cost for building owners and managers. Therefore, it is essential for FMs to improve the efficiency of their HVAC systems to reduce energy costs and improve the overall building performance. Here are some ways you can improve the efficiency of your building’s HVAC system.
Conduct Regular Maintenance
Regular maintenance is essential to keeping HVAC systems functioning at their best. Facilities managers should schedule regular inspections, cleanings, and repairs to ensure that HVAC systems are running efficiently. Neglected HVAC systems can lead to dirty filters, clogged coils, and leaky ducts, which can reduce performance and increase energy consumption. Regular maintenance can help prevent these issues, extend the lifespan of the system, and save energy and money in the long run.
Use High-Efficiency HVAC Equipment
Upgrading to high-efficiency HVAC equipment can significantly improve the efficiency of the system. Facilities managers should consider using equipment that meets or exceeds industry standards, such as those certified by ENERGY STAR. High-efficiency HVAC equipment uses less energy than traditional equipment, which can lead to significant energy savings over time. Moreover, high-efficiency equipment is often designed to operate at part-load conditions, which can result in additional energy savings during periods of low demand.
Install Programmable Thermostats
Programmable thermostats are a valuable tool for improving HVAC system efficiency. They allow facilities managers to set temperature schedules that align with the building’s occupancy schedule. For example, the thermostat can be set to lower the temperature during non-business hours or weekends when the building is unoccupied and raise it before employees arrive. This simple step can reduce energy consumption and lower energy costs significantly. Also, consider automating your after-hours HVAC program or going HVAC on-demand for the weekends. These programs cut energy waste while giving your tenants more flexible work hours.
Optimize Airflow
Optimizing airflow is another essential factor in improving HVAC system efficiency. Facilities managers should ensure that HVAC systems are designed to deliver the right amount of air to each area of the building. The air ducts should be sized correctly to match the load requirements of the building, and they should be sealed to prevent air leakage. Additionally, filters should be checked regularly and replaced as necessary to ensure that the system is not overworking to compensate for restricted airflow.
Consider Renewable Energy
Facilities managers should also consider integrating renewable energy sources into their HVAC systems. Renewable energy sources such as solar and geothermal can provide an energy efficient and sustainable source of energy for HVAC systems. Solar panels can generate electricity to power the HVAC system, while geothermal systems can use the ground’s stable temperature to heat or cool the building. Although these options may require significant upfront investment, they can provide long-term cost savings and reduce the building’s carbon footprint.
Improve Building Envelope
Improving the building envelope is another way that facilities managers can improve HVAC system efficiency. The building envelope includes the walls, roof, windows, and doors that separate the indoor and outdoor environments. Improving insulation, weather stripping, and window and door seals can reduce heat transfer and prevent air leaks, resulting in less heating and cooling energy needed. The HVAC system will have less load to handle and thus function more efficiently.
In conclusion, improving the efficiency of HVAC systems can significantly reduce energy consumption and lower costs for building owners and managers. Facilities managers can achieve this by conducting regular maintenance, using high-efficiency equipment, installing programmable thermostats, optimizing airflow, considering renewable energy, and improving the building envelope. With these steps in place, facilities managers can ensure that their HVAC systems are functioning optimally, providing comfortable environments for building occupants while saving energy and money in the long run.