Revamping Workplace Productivity and Wellbeing Through Strategic Facility Design

Revamping Workplace Productivity and Wellbeing Through Strategic Facility Design

In today’s fast-paced environment, the design of workplace spaces significantly impacts the mood, health, and productivity of employees. Facility managers and owners are shifting their focus. They’re no longer just creating spaces that fulfill basic needs. Instead, they’re crafting environments that improve the well-being and efficiency of everyone inside. This shift towards spaces that positively influence the occupants’ physical and psychological states not only enhances productivity but also cultivates a healthier workplace culture.

The Significance of Well-Conceived Workspaces

Numerous studies have established a link between workspace design and employee productivity and well-being. Well-lit, ventilated, and aesthetically pleasing spaces can boost mood and energy, leading to enhanced work performance. On the flip side, poorly designed spaces can cause discomfort and even health issues. Thus, the design of a workspace plays a critical role in the well-being and efficiency of its occupants.

Enhancing Natural Light and Ventilation

Natural light and fresh air play pivotal roles in creating an optimal work environment. Integrating large windows, skylights, and smart positioning of workstations to maximize natural light can make a significant difference. Good ventilation is equally important for maintaining air quality and ensuring the well-being of everyone in the workspace.

Prioritizing Ergonomic Design

Comfortable furniture and equipment that promote good posture are essential. Options like ergonomic chairs, adjustable desks, and keyboard trays help in reducing physical discomfort, making a noticeable difference in daily productivity.

Introducing Green Spaces

Incorporating plants and living walls into the office not only beautifies the space but also enhances air quality and reduces stress levels. Such natural elements can transform the ambiance, making it more welcoming and restorative.

Flexible Workspaces for Diverse Needs

The rise of flexible workspaces reflects the evolving needs of today’s workforce. Offering a mix of areas for collaboration, focus, and relaxation supports various work styles and tasks, thereby boosting overall satisfaction and productivity.

Embracing Biophilic Design

Biophilic design takes the concept of integrating nature into the workspace to a new level. It includes using natural materials and colors, and even incorporating water features. This approach has been shown to reduce stress, enhance cognitive function, and improve mood and creativity.

Integrating Technology Seamlessly

Incorporating infrastructure for advanced technology ensures that workspaces are not only functional but also future-proof. This supports high-speed internet, wireless communication, and smart technology, facilitating seamless work processes.

Aesthetics and Personal Touches Matter

A visually appealing workspace that allows for personalization can significantly impact how connected and satisfied employees feel with their environment. Artwork, brand elements, and personal spaces contribute to a sense of identity and belonging.

Wellness Areas: A Must-Have

Dedicating spaces for physical and mental relaxation, such as fitness centers or quiet rooms, underscores the importance of holistic well-being in the workplace. It shows a commitment to supporting employees’ health and well-being comprehensively.

The Proactive Role of Facility Managers

Facility managers and owners play a crucial role in implementing these design principles. They must align the workspace design with the organization’s unique culture and needs. This may involve collaboration with interior designers and architects to create spaces that reflect the company’s values and goals. Additionally, staying informed about the latest workspace design trends and incorporating sustainable practices is key to creating environments that inspire and support employees.

Conclusion

Thoughtful facility design is a powerful tool for promoting productivity and well-being. By focusing on natural lighting, ergonomic setups, flexible spaces, and wellness areas, facility managers can create environments that not only meet functional needs but also inspire and uplift. As workspace design continues to evolve, the emphasis on creating people-centric environments will undoubtedly grow, highlighting the critical role of our surroundings in shaping our work experiences and overall well-being.

How to Improve Efficiency in Your HVAC System

How to Improve Efficiency in Your HVAC System

Heating, ventilation, and air conditioning (HVAC) systems are a critical component of any building’s infrastructure. They are responsible for maintaining indoor air quality and ensuring a comfortable environment for building occupants. However, HVAC systems can also be a significant source of energy consumption and cost for building owners and managers. Therefore, it is essential for FMs to improve the efficiency of their HVAC systems to reduce energy costs and improve the overall building performance. Here are some ways you can improve the efficiency of your building’s HVAC system.

Conduct Regular Maintenance

Regular maintenance is essential to keeping HVAC systems functioning at their best. Facilities managers should schedule regular inspections, cleanings, and repairs to ensure that HVAC systems are running efficiently. Neglected HVAC systems can lead to dirty filters, clogged coils, and leaky ducts, which can reduce performance and increase energy consumption. Regular maintenance can help prevent these issues, extend the lifespan of the system, and save energy and money in the long run.

rooftop air handling unit

Use High-Efficiency HVAC Equipment

Upgrading to high-efficiency HVAC equipment can significantly improve the efficiency of the system. Facilities managers should consider using equipment that meets or exceeds industry standards, such as those certified by ENERGY STAR. High-efficiency HVAC equipment uses less energy than traditional equipment, which can lead to significant energy savings over time. Moreover, high-efficiency equipment is often designed to operate at part-load conditions, which can result in additional energy savings during periods of low demand.

Install Programmable Thermostats

Programmable thermostats are a valuable tool for improving HVAC system efficiency. They allow facilities managers to set temperature schedules that align with the building’s occupancy schedule. For example, the thermostat can be set to lower the temperature during non-business hours or weekends when the building is unoccupied and raise it before employees arrive. This simple step can reduce energy consumption and lower energy costs significantly. Also, consider automating your after-hours HVAC program or going HVAC on-demand for the weekends. These programs cut energy waste while giving your tenants more flexible work hours.

Optimize Airflow

Optimizing airflow is another essential factor in improving HVAC system efficiency. Facilities managers should ensure that HVAC systems are designed to deliver the right amount of air to each area of the building. The air ducts should be sized correctly to match the load requirements of the building, and they should be sealed to prevent air leakage. Additionally, filters should be checked regularly and replaced as necessary to ensure that the system is not overworking to compensate for restricted airflow.

Consider Renewable Energy

Facilities managers should also consider integrating renewable energy sources into their HVAC systems. Renewable energy sources such as solar and geothermal can provide an energy efficient and sustainable source of energy for HVAC systems. Solar panels can generate electricity to power the HVAC system, while geothermal systems can use the ground’s stable temperature to heat or cool the building. Although these options may require significant upfront investment, they can provide long-term cost savings and reduce the building’s carbon footprint.

Improve Building Envelope

Improving the building envelope is another way that facilities managers can improve HVAC system efficiency. The building envelope includes the walls, roof, windows, and doors that separate the indoor and outdoor environments. Improving insulation, weather stripping, and window and door seals can reduce heat transfer and prevent air leaks, resulting in less heating and cooling energy needed. The HVAC system will have less load to handle and thus function more efficiently.

In conclusion, improving the efficiency of HVAC systems can significantly reduce energy consumption and lower costs for building owners and managers. Facilities managers can achieve this by conducting regular maintenance, using high-efficiency equipment, installing programmable thermostats, optimizing airflow, considering renewable energy, and improving the building envelope. With these steps in place, facilities managers can ensure that their HVAC systems are functioning optimally, providing comfortable environments for building occupants while saving energy and money in the long run.

The Metaverse, Digital Twins, and Building Decarbonization

The Metaverse, Digital Twins, and Building Decarbonization

After the former-company-known-as-Facebook rebranded itself in late 2021 to Meta, much of the world discovered the “metaverse”—the next generation of human connectivity that would fundamentally transform how we socialize and work.  

According to Zuckerberg’s vision, the metaverse will be a place where social interactions are completely virtual, with self-created and customizable avatars interacting in ways that seem so real, we will easily take them as such. The new digital reality would affect work too, allowing workers to be at the “office” without leaving their home or changing out of their sweatpants. Remote workers no longer need to worry their physical office cohorts will race ahead, grabbing the next promotion or swanky project. Everyone would work in the same “space” regardless of their physical location.  

The move to an immersive digital social life will certainly have massive implications for society, but building a new digital Agora for the modern world only scratches the surface of what the metaverse will be. That’s because its value extends beyond video games, social media, and the workplace. In fact, the sector to feel the most impact of these new virtual spaces will likely be today’s very real built environments. 

Building Digital Twins 

One key aspect of the metaverse for the built environment is the digital twin—a virtual doppelganger of a physical object or process. The notion of such a digital double is several decades old and the culmination of advances in 3D/BIM software, machine learning, and virtual technology. While architectural drawings have rendered 2D renderings of buildings for hundreds of years, 3D software added that extra dimension. Later, virtual reality would make the fourth dimension (time) possible. These advances set the stage for modeling physical processes like the human body or providing virtual walkthroughs of spaces like residential and commercial buildings.   

However, digital twins serve a more important and practical purpose than visual mimicry; they attempt to model reality itself. To do this, digital twins must account for as many data points as possible. This includes every object, process and system that exists within a building—from the largest HVAC plant to the smallest occupancy sensor. All digital building systems function within a virtual world dynamically modeled to mimic the dimensions of time and space and natural forces. In short, the virtual world contains the same physical limitations as its physical counterpart.  

The advantage of a digital twin, whether it be a building or an entire city, is that you can make changes and see what happens without doing it for real. This can be advantageous when time and costs are too great for real-life recreation or when impractical or impossible. Climate scientists, for example, use digital twins of the Earth’s weather systems to make predictions about the effects of global warming.  

The more data points that make up your digital twin, the more accurate your simulations. In this way, data points function much like pixels that make up a screen, in that the more you can pack into a model, the higher the “resolution” and more life-like images you get.  

However, such huge buckets of data take enormous amounts of computational power to process and manage. That’s where artificial intelligence and machine learning have helped give birth to the metaverse. Sophisticated algorithms do much of the “thinking” for us—locating patterns, making connections, running simulations and spitting out the results. Without them, modeling of systems is a rudimentary process, and it’s only relatively recent that we’ve been able to handle enough data to represent a virtual facsimile of complex physical processes and systems.   

Helping Speed Up Building Decarbonization Adoption 

As the metaverse takes its first steps, markets are already pricing in the tech’s potential to transform the built world. From a current global market size of $3.1 billion in 2020, experts project the digital twin market will reach $48.2 billion by 2026. Such growth is why some engineers, architects and entrepreneurs are looking to the metaverse and AI technology to help lower carbon emissions. In fact, an Ernst and Young study found that digital twins can reduce a building’s carbon emissions by half.   

Founder and CEO of Cityzenith, Michael Jansen, oversees a digital twin platform that’s leading the push to decarbonize entire cities using metaverse technology. Recently Jansen hosted a live event laying out the current challenges to building decarbonization and how investing in digital twins can speed up green capital investments in the U.S. One pain point for property owners is retrofitting costs, which the CEO estimates at $4 to $7 USDs per square ft ($21 to $75 per sq m). “When you consider the fact that building owners spend about $2.10 per square foot on energy annually, it’s a large number,” Jansen states. 

Another hurdle to building decarbonization adoption is the inherent conflict between the short-term gains investors demand vs the long-term investment that sustainable retrofitting requires. “The payback periods on typical [green] retrofits can be 10 to 15 years,” Jansen explains. “Those at the top of the investment pyramid typically look for returns within three to five years. As a result, a lot of these investments just don’t happen.” 

While Jansen admits there are many challenges to green investment and adoption, he believes data is the obvious answer, at least for the short term. But buildings and cities contain thousands of software platforms, untold sensors, and BMS systems sending and receiving gigabytes of data through the air and over wires. It’s understandable that building managers can often feel as if they’re drowning in a sea of data and the digital tools that fill it.   

Jansen claims it’s this “chaos of tools” that’s slowing building decarbonization efforts throughout the market. However, it’s understandable property owners would sidestep solving the issue of data glut, especially given the more immediate threats like higher construction costs, supply chain issues, swelling energy prices, and a shrinking demand for commercial office spaces.  

Still, the Cityzenith CEO is correct in the assumption that funneling the increasing volume of data streams into a singular control is a desired outcome for most property and city managers. In fact, it’s this same consolidating impulse that’s motivating the move to integrated systems and open protocols within BMS technology today. Consolidation certainly increases data points, which is what digital twins need to be effective.   

What’s needed is a “system of systems,” Jansen says. “The purpose of building a kind of metaverse around all of this…was to allow all these decarbonization processes to happen in one common place. So, all that activity could be studied and simulated before anybody actually spends a dollar. We use digital twins to predict energy consumption and financial outcomes to help drive down capital risk and increase adoption.”  

Metaverse for Asset and Risk Management   

While digital twins have numerous upsides for building decarbonization and efficiency, they can also help property owners and managers safeguard their investments. With aggregated data from building systems, equipment, and real-time sensors, digital twins can run physics-based models built on “what-if” scenarios.  

Building and city managers can ask energy-related questions like “What if we bought 10% more solar and wind energy?” or “What if we generated more power on-site with roof-top solar array?”. After running such scenarios through a digitized property, owners would have a more accurate picture of the financial and operational impacts before committing. More importantly, they could easily tweak their input data until the outcomes fall within acceptable limits.  

By using digital twins to accurately see future outcomes, property managers can also bolster their risk management. “What-if” statements can also apply to emergency situations like pandemics, natural disasters, and social upheaval. During COVID, many property owners scrambled to adjust to sudden lockdowns, indoor air quality demands, new hygiene mandates, and occupancy management challenges. Digital twin simulations of these variables could have better prepared owners and managers for the challenges while saving time, money, and possibly lives.     

Sources: 

“Cityzenith’s real world metaverse for decarbonization”. Published April 21, 2022, accessed April 28, 2022. https://youtu.be/l0L_7gwguoA 

“Digital twin: the Age of Aquarius in construction and real estate.” Todd Lukesh, Eric Ottinger, Nipun Bajaj, Jordan Stein, Erica Crandon, Mark Gibson and Akanksha Jain. Published May 2021, accessed 27 April 2022. https://www.ecmag.com/sites/default/files/Digital%20twin%20-%20the%20Age%20of%20Aquarius%20in%20construction%20and%20real%20estate.pdf 

“Digital Twin market”. Markets and Markets website, , accessed 25 March 2021, © 2021 Markets and Markets Research Private Ltd. https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html 

“Everything Facebook revealed about the Metaverse in 11 minutes”. CNET. Published October 29, 2021. Accessed April 26, 2022. https://youtu.be/gElfIo6uw4g 

Help Decarbonize Your Building with After-Hours HVAC Automation

Help Decarbonize Your Building with After-Hours HVAC Automation

Buildings are responsible for a significant chunk of emitted green house gases (GHGs) into the atmosphere. Therefore, they’re a leading contributor to global warming. In the U.S., buildings account for 40% of all U. S. primary energy and its associated GHG emissions. While these stats appear bleak, they actually represent a positive when it comes to FMs and owners. Because property owners and managers helm the ship of the Built Environment, they have the power to steer decarbonization efforts in the right direction. By adopting smart technology and building automation, property owners can significantly contribute to GHG reduction while saving money and futureproofing their investments.  

With building decarbonization, small changes can make a big difference. Automating your after-hours HVAC program is an easy first step to reducing your property’s carbon footprint. You don’t need to take out a loan to invest in automation tech either. Online tools like cloud-based after-hours HVAC apps are inexpensive and simple to integrate with your existing BMS.     

Cut Mistakes, Cut Waste 

While after-hours request programs vary, the standard process works like this: the tenant fills out a work request for after-hours air conditioning or heating. Staff members record the request. The building engineer programs the HVAC to fulfill the request. The air con/heating is delivered at the require day and time. The property manager invoices the tenant at the end of the month.  

Every step in this manual request process is an opportunity for errors to crop up. Forgotten emails, data entry mistakes and missed change requests are all more likely with a manual process. Mistakes cost time and energy, whether its extra lighting, access gates, lift rides or added HVAC service itself.  

After-hours HVAC booking apps replace these manual step with wireless technology and network connections. Tenants create requests via a mobile or desktop app. The system then interfaces with the building’s BMS to schedule the request. The tenant, time and date are automatically logged, and the BMS delivers heating and air con on the requested days. By automating these steps, you cut out the wasted energy and help lower your carbon footprint.

pressing thermostat button versus using cellphone

Push Buttons vs. Cloud-Based Apps 

Push button systems for activating HVAC service eliminate some, but not all, of the manual steps. They’re designed to deliver service as requested, giving tenants easy access to and control over HVAC operation. However, their openness can be a liability.  Since anyone within the building can request service, savings from push button controls are often undermined by their public access.

There are no guards against everyone (ex. maintenance or cleaning staff) from accessing controls. So, unauthorized access can lead to unaccounted and wasted energy use. It’s also easy for occupants to “hit the button” minutes before leaving the room or floor, resulting in wasted energy from heating and cooling unoccupied spaces.  

After-hours HVAC apps reduce energy waste by limiting access to the platform. In a cloud-based system, only authorized users can create HVAC requests. And the system records both the request and the requester. So owners always know who requests services. Plus, tenants can re-schedule and cancel bookings from anywhere there’s an internet connection. This helps save energy by eliminating empty room heating and cooling.

Data Equals Decarbonization 

Automation goes hand-in-hand with data. Today’s smart sensors, IoT devices, machine learning, AI, digital twins, and BMS integration all point to the eventual integration of every building systems. In the near future, fire systems will “talk” with access systems to track occupants during an emergency. Access systems will work in tandem with HVAC systems to adjust heating and cooling demands based on occupancy levels. Building management systems will connect to utility providers to shift energy usage during peak demand. Such interoperability is already evolving, but it requires data to work properly.  

By automating your HVAC requests, you can collect data on how and when your tenants are requesting HVAC services and use it to conserve energy. For example, you can identify seasonal trends and make targeted improvements and retrofits for specific zones of your property. Automation puts you in a better position to transition your property into a smart building and futureproof your assets. 

What is an Overtime HVAC System?

What is an Overtime HVAC System?

If you have commercial tenants, they’ve likely scheduled heating or air conditioning outside of your building’s usual business hours. Managers and owners commonly refer to these extra hours as overtime HVAC, after-hours HVAC, after-hours air conditioning or some variation. These overtime utility services give companies the flexibility to host special events, hold annual meetings, or simply extend their workday hours.

Tenant overtime HVAC systems are online platforms that automate the scheduling and billing of those after-hours HVAC requests. These systems streamline much of the traditional steps of a tenant overtime program, including scheduling and billing. Consequently, they save property managers and their staff time and resources. In addition, overtime HVAC systems can increase tenant satisfaction and conserve energy. Modern systems operate on a software-as-a-service model (SaaS) where property managers pay a monthly subscription for the service, but one-time fees are also available.

online calendar for scheduling after hours hvac
Modern tenant overtime systems let property owners set normal business hours (blue), while tenants can schedule HVAC service outside these times (green).

After-Hours vs Standard Occupancy Times

Standard business hours or “occupancy times” for buildings vary by region, but most fall somewhere around 8 a.m. and 6 p.m. Monday to Friday. Owners and managers define their business hours within commercial leases and agree to provide heating, cooling and lighting for tenants to operate their businesses. However, many leases also allow for “after-hours” or “overtime” HVAC requests. These are defined as any times outside normal business hours, and they’re usually billed separately from normal OPEX.

To recoup the costs for providing after-hours HVAC services, managers and owners usually charge tenants a fixed hourly rate (ex: $35/hour). The rate usually includes an estimated energy cost for providing service for one hour, plus an admin fee to cover staff time.

Overtime HVAC Scheduling

Because after-hours HVAC requests are outside standard operating hours, tenants must schedule them with the manager or building engineer. Typical steps in a standard overtime program usually involve the following:

  1. The tenant makes an overtime HVAC request via email or text.
  2. The manager records the request in a spreadsheet and notifies the building engineer.
  3. The engineer programs the request into the building’s BMS.
  4. The manager invoices the tenant at the end of the month for the overtime charges.

Managing this process requires time and resources, which is why most leases require a 24 or 48-hour notice per request. The window gives staff enough time to schedule the request, but places limits on how spontaneous tenants can be with last minute schedules. 

Tenant overtime HVAC systems eliminate or simplify many of the above steps. Instead of an email or phone call, tenants use an online portal and web browser to submit overtime requests. Since overtime systems link to your building’s BMS, they bypass the need for manual reporting and system programming—no managers or engineers needed. This keeps notice times shorter, and tenants benefit from the increased flexibility.   

Overtime HVAC systems also come with mobile apps. Tenants use these programs to schedule after-hours services from their smartphones or tablets. The freedom of mobile scheduling tends to increase overall tenant satisfaction with a property’s after-hours program.

graph showing tenant overtime hvac system
Common connection flow of a cloud-based tenant overtime HVAC system to a commercial property.

Overtime HVAC Billing

Billing for standard hour energy is straightforward. Tenants pay pro rata based on the building’s total utility costs for the month. The strategy essentially splits the energy costs among all tenants equally, and everyone pays their share at the end of the month. However, overtime HVAC charges add complexity to monthly billing. It would be unfair to split overtime energy costs among all tenants, since only specific ones use it, so landlords invoice tenants only for the kWh they use.

However, individual invoicing takes more time. Spreadsheets need updated. Invoices generated. Emails sent to tenants. Plus, manual entry increases the risk of mistakes, leaving tenants paying too much or too little. Tenant overtime HVAC systems automate most of these monthly billing tasks, eliminating human error and tenant disputes around charges.

Overtime systems record BMS operation histories in their servers. So, times, days, and durations of overtime services are automatically generated for any timeframe. Most platforms also automate monthly billing to tenants. Since the system tracks individual usage, it can email automated invoices to tenants, taking the paperwork off property managers. 

Energy Conservation       

On average, 30% of the energy used in commercial buildings is wasted. After-hour scheduling changes and cancellations happen. It’s not uncommon for tenants to walk into unheated boardrooms or for entire building floors to sit unoccupied while chillers run at full power. Such scheduling mistakes waste energy and money. The bulk of these issues stem from recording mistakes and human error. A work order was overlooked, an email went to spam. Someone was out sick. These are common, often unavoidable, situations.

Because they’re automated systems, tenant overtime platforms eliminate human error. Schedule changes and cancellations are caught more frequently and wasted energy reduced. 

Overtime HVAC systems can also positively affect tenant attitudes toward energy waste. Because tenants pay for the overtime kilowatts they use, they’re more cautious about waste. In contrast, attitudes towards energy use during standard business hours can be markedly different. Those tenants often have a “use it or lose it” approach, feeling they should condition the air in their spaces, whether they’re empty or occupied. The attitude is “We’re paying for it anyway.”

Tenant Satisfaction

Aside from time and money savings, the biggest selling point of overtime HVAC systems is their value to tenant businesses. With HVAC scheduling, office managers can operate hybrid workspaces more effectively. Government agencies can use after-hours reports to report on sustainability goals. Software developers could employ overtime usage to evaluate team productivity. Marketing agencies could add overtime energy costs as a billable line item for clients. The value of tenant overtime HVAC systems is yet to be fully realized, but the heart of it lies in their ability to empower tenants to run better businesses and organisations.

Documenting Your After-Hours AC for NABERS

Documenting Your After-Hours AC for NABERS

Counting every kWh your property uses is important for your NABERS Energy Rating assessment. The more detailed your records, the more accurate your rating will be. Getting a true picture of your energy consumption means including and documenting your after-hours air conditioning (AHAC) service.     

The NABERS Preparing for Office Rating Guide is a helpful resource for identifying what basic information to gather. But the guide doesn’t get into the specifics around documentation for AHAC. Documenting AHAC hours can be tricky given they’re usually tracked separately from normal operating hours. For a deeper dive, we recommend the NABERS Energy and Water for Offices Rules v.5.1. Although this resource is as a guide for assessors, it also provides valuable insights for FMs and property managers. 

The Rules around AHAC are complex and hard to drudge through, so we’ve done the work for you. Below is a breakdown of the NABERS Rules for documenting AHAC, which will better prepare you for your assessment. 

Rated Hours

NABERS assessors calculate the total number of hours per week your building is occupied—your rated hours. Assessors use your rated hours along with your annual kWh usage and other factors to determine your efficiency rating. 

To calculate your rated hours, assessors will look at your core hours. These are your normal operating hours per week (e.g., 8 am to 6 pm). Core hours are usually listed within the owner/tenant agreement (OTA), and the assessor will likely use your OTA to help determine these. 

To increase accuracy, assessors also include any AHAC hours. Your HVAC system uses energy to produce the AHAC service, so you should count these hours too. Any missing AHAC hours skew your total rated hour count, lowering your NABERS rating. And the impact will be proportionate to the total hours demanded. That is, the more AHAC hours omitted from your rated hours, the more inefficient your property will appear. 

AHAC Documentation

The negative impact of omitting AHAC hours is why it’s critical to keep accurate logs of tenant requests. For NABERS, not just any records will do either. Assessors must deem data “acceptable” or else include it in the calculation. The NABERS Rules lists the following types of “acceptable data.”  

Tenant Requests

Section 5.3.3.1 of the NABERS Rules addresses AHAC requests and states that “acceptable data” includes:

  1. Logs of AHAC requests by tenants, showing the date and time of each request and the functional space to which it applied; and
  2. Evidence of other AHAC requests, such as correspondence between the tenant and the owner or building manager or information written into the OTA which has been verified to be correct and up-to-date. This evidence must include the date, time and space to which AHAC has been agreed to be applied.

Therefore, an example of acceptable documentation might be an automated entry from an after-hours HVAC app that records date, time, floor and tenant. Unacceptable documentation might be a tenant email listing only the requested date and time. The most important part of accurate documentation is the tenant’s request, so keep this in mind when setting up your request process.   

Overlapping Hours

To be considered rated hours, AHAC hours also can’t overlap with your core hours. So you’ll need acceptable documentation showing their separation. Section 8.3.2 of the Rules explains that to include AHAC hours, you must provide:

  1. Evidence that no AHAC has been counted during the Core Hours and during the plant start-up period or the hour before the start of Core Hours if the plant start-up period is unknown;

One thing to note here: NABERS focuses heavily on counting only “comfort condition” hours— times when internal temps are appropriate for occupancy. Assessors assume that comfort conditions are not met during the start-up time for your plant. For that reason, you can’t count any AHAC hours that occur during start-up times for your system. If you can’t provide evidence of the actual run up times for temps, assessors will assume one hour. 

Example: Your OTA lists your core hours from “8 a.m. to 6 p.m.” Your normal plant start-up time begins at 7 a.m. to reach comfort conditions. Tenant A requests AHAC from 7 a.m. to 8 a.m. on Wednesday, but your start-up time for Wednesday stays at 7 a.m. (i.e., AHAC and start-up begin at the same time). Since your building isn’t at “comfort conditions” by  7 a.m. on Wednesday, you can’t count that AHAC hour towards your rated hours.

graph showing business hours vs after hours

Zones and Functional Spaces

To calculate AHAC hours, NABERS assessors also need to divide your net lettable area (NLA) into functional spaces— specific areas of your building. Functional spaces can be based on tenancy distinctions (i.e., leases) or physical ones (e.g. HVAC zones), but variations often happen. For example, multiple tenants could occupy the same functional space by leasing the same floor. In contrast, a single tenant might occupy separate functional spaces. 

Regardless, the goal of defining functional spaces is to group areas with the same periods of occupancy so assessors can calculate the effects of vacancies and different operational hours on your building’s efficiency. 

For facilities managers, the important thing to note is that AHAC requests need to reference their correct functional spaces. This is especially important when multiple tenants share the same functional spaces. Accurate records and detailed building schematics are essential, and assessors will use them to calculate your rated hours. To this end, Section 8.3.2 of the Rules requires documentation in the form of:

  1. Drawings and measurements showing AHAC zones for requests serving different zones within a single functional space.

If the NABERS assessor can’t locate detailed areas for different AHAC zones, they will use the smallest area available or else average hours together. Either way, any guesswork will lower the accuracy of your rated hours.

The rules around multiple tenants sharing functional spaces and zones can get quite complex. So, read section 5.3.3 of the NABERS Rules to see what situation fits your properties the most. 

Conclusion

The way your NABERS assessor handles your AHAC consumption will depend on several factors. One of those is how they arrive at your core hours. There are several methods for doing this, which depends on what data you make available. The assessor may determine your core hours from your lease. If data is missing, they may need to calculate an average, and when estimates are involved, you can bet they won’t likely benefit your rating. In the end, the key is proper and thorough documentation of your AHAC requests, HVAC zones, and NLA.