Energy Efficiency in Older Buildings: Retrofitting Solutions for the 21st Century

Energy Efficiency in Older Buildings: Retrofitting Solutions for the 21st Century

When it comes to energy efficiency, older buildings often get a bad rap. Constructed long before modern efficiency standards and packed with aging systems, they’re perceived as energy hogs. Yet, these structures—whether historic landmarks or mid-century office blocks—make up a significant portion of the built environment. Rather than tearing them down, retrofitting offers a sustainable and cost-effective pathway to transform these buildings into 21st-century efficiency champions.

The Case for Retrofitting

Retrofitting is the process of upgrading existing building systems to improve energy performance, comfort, and operational efficiency. For older buildings, this is not just a nice-to-have but a necessity. Energy costs are rising, ESG (Environmental, Social, and Governance) compliance is becoming critical, and tenants increasingly demand green and efficient spaces.

But retrofitting isn’t just about installing LED lights or adding insulation—though those help. The game-changer lies in automation and controls, which bring intelligence, adaptability, and precision to energy management.

Challenges of Retrofitting Older Buildings

Before diving into solutions, it’s essential to understand the unique challenges of retrofitting older buildings:

  1. Outdated Infrastructure: Legacy systems may be incompatible with modern technologies.
  2. Preservation Constraints: Historic buildings often have restrictions on alterations to their structure or appearance.
  3. Budget Constraints: Retrofitting can be capital-intensive, and owners may hesitate to invest without a clear return on investment (ROI).
  4. Complex Occupant Needs: Older buildings may house diverse tenants with varying energy requirements and comfort expectations.

Despite these challenges, numerous retrofitting solutions can significantly enhance energy efficiency without breaking the bank—or the building’s character.

Cost-Effective Retrofitting Solutions

1. Smart HVAC Systems

Heating, ventilation, and air conditioning (HVAC) systems are often the largest energy consumers in a building. Retrofitting older HVAC setups with smart controls can yield dramatic savings.

  • Upgrades: Install variable speed drives (VSDs) on motors, upgrade to energy-efficient chillers, and replace outdated boilers.
  • Smart Thermostats: These devices use occupancy sensors and data analytics to adjust temperatures dynamically, reducing energy waste.
  • Demand-Controlled Ventilation: Integrating CO2 sensors allows ventilation systems to modulate airflow based on actual occupancy levels rather than running at full tilt.

ROI Insight: Many HVAC retrofits pay for themselves within 5-7 years through energy savings and lower maintenance costs.

2. Building Automation Systems (BAS)

For real efficiency gains, older buildings need brains as much as they need brawn. A building automation system acts as the control hub for HVAC, lighting, and other systems, optimizing energy use in real time.

  • Integration: A BAS can integrate with existing systems, even in older buildings, to enable features like scheduling, remote monitoring, and predictive maintenance.
  • Scalability: Modern BAS platforms are modular, meaning you can start small (e.g., HVAC controls) and scale up as budget allows.
  • AI and IoT: Pairing BAS with IoT devices and AI algorithms enhances capabilities, such as predicting energy demand or identifying inefficiencies before they escalate.

Example: A 1970s office tower in Chicago retrofitted with a BAS saw a 20% reduction in energy consumption within the first year.

3. Lighting Retrofits with Smart Controls

Lighting accounts for 10-25% of a building’s energy use, and retrofitting older systems is one of the easiest ways to cut costs.

  • LED Upgrades: Replacing fluorescent or incandescent fixtures with LEDs can slash energy use by up to 75%.
  • Occupancy Sensors: These ensure lights are only on when rooms are in use.
  • Daylight Harvesting: Light sensors adjust artificial lighting levels based on available natural light, reducing energy waste.
  • Centralized Control: Linking lighting to the BAS enables scheduling and remote control across the entire building.

4. Envelope Improvements with Automation

The building envelope—windows, walls, and roof—plays a critical role in energy efficiency. While full replacements may be cost-prohibitive, retrofits with automation can deliver significant gains.

  • Smart Window Film: Dynamic window films adjust their tint based on sunlight levels, reducing cooling loads in summer and preserving heat in winter.
  • Motorized Shades: Automated shading systems integrate with BAS to optimize daylight use and reduce HVAC loads.
  • Air-Sealing Sensors: IoT-enabled devices can detect air leaks and monitor insulation performance over time.

5. Energy Monitoring and Analytics

You can’t improve what you don’t measure. Installing energy monitoring systems provides actionable insights into how and where energy is being used—and wasted.

  • Submetering: Break down energy use by zone, system, or tenant to pinpoint inefficiencies.
  • Real-Time Dashboards: Modern BAS often come with dashboards that visualize energy consumption trends and alert operators to anomalies.
  • Predictive Analytics: AI-driven analytics can forecast energy usage and recommend specific retrofitting actions for maximum impact.

Case Study: A university retrofitted its 19th-century administrative building with IoT sensors and energy monitoring software, uncovering HVAC inefficiencies that saved $40,000 annually after adjustments.

6. Renewable Energy Integration

While not strictly retrofitting, integrating renewable energy systems like rooftop solar panels or small wind turbines can offset energy use dramatically. When paired with BAS and energy storage systems, older buildings can achieve near-zero net energy status without major structural alterations.

Benefits Beyond Energy Savings

While the primary goal of retrofitting is to reduce energy costs, the benefits extend far beyond the utility bill:

  1. Tenant Retention and Satisfaction: Energy-efficient buildings are more comfortable and appealing to tenants, enhancing retention and lease rates.
  2. Increased Property Value: Retrofitted buildings often command higher sale prices and attract premium tenants.
  3. ESG Compliance: As environmental regulations tighten, retrofitted buildings are better positioned to meet mandates and achieve certifications like LEED or BREEAM.
  4. Operational Resilience: Upgraded systems are less prone to failure, reducing maintenance costs and downtime.

Getting Started

Retrofitting an older building may seem daunting, but breaking the process into manageable steps ensures success:

  1. Conduct an Energy Audit: Start by identifying the biggest energy hogs and potential areas for improvement.
  2. Prioritize Quick Wins: Target low-cost, high-impact measures like LED lighting or smart thermostats.
  3. Plan for Scalability: Choose systems that can integrate with future upgrades to avoid costly replacements later.
  4. Leverage Incentives: Explore federal, state, and local programs offering grants or rebates for energy retrofits.

The 21st-Century Opportunity

Older buildings may not have been designed with energy efficiency in mind, but retrofitting gives them a new lease on life. With the right mix of automation, controls, and smart technologies, these buildings can not only compete with modern construction but often surpass it in performance.

In the end, retrofitting isn’t just about cutting costs or reducing carbon footprints—it’s about preserving the past while preparing for the future. And in the 21st century, that’s a mission worth undertaking.

Demand Response and the Role of Building Automation in Grid Resilience

Demand Response and the Role of Building Automation in Grid Resilience

In a world increasingly defined by the pursuit of sustainable energy, the term “grid resilience” has become a mantra for energy providers, policymakers, and building operators alike. A resilient grid can withstand disruptions—whether from storms, cyberattacks, or surging demand—while ensuring that energy continues to flow to where it’s needed most. But grid resilience isn’t just about the infrastructure itself; it’s also about how users interact with the grid. Enter demand response (DR) and building automation systems (BAS)—a dynamic duo poised to redefine how buildings support a smarter, more adaptive energy landscape.

Understanding Demand Response

At its core, demand response is a strategy for balancing energy supply and demand. When demand spikes—say, on a sweltering summer afternoon when air conditioners are cranked up—utilities can call on participating customers to reduce their energy use, helping to prevent blackouts and stabilize the grid. In return, participants often receive financial incentives, such as reduced energy rates or direct payments.

Demand response comes in two main flavors:

  1. Emergency DR: This kicks in during grid emergencies, such as when a power plant unexpectedly goes offline or when extreme weather stresses the system.
  2. Economic DR: This occurs during periods of high wholesale electricity prices, encouraging reductions in demand to avoid the cost of firing up expensive peaker plants.

While historically limited to large industrial users, demand response has expanded into commercial and residential sectors, thanks in large part to advancements in building automation and the Internet of Things (IoT).

electrical power panels

The Role of Building Automation Systems

Building automation systems are the brains behind modern facilities. They monitor and control HVAC systems, lighting, elevators, and even window shades, optimizing comfort and energy efficiency. When BAS are integrated with demand response programs, they act as the critical link between the building and the grid, enabling real-time adjustments that align with grid needs.

Here’s how BAS enhances demand response participation:

1. Automated Load Management

Traditional demand response relied on manual interventions—turning off lights, adjusting thermostats, or shutting down equipment during DR events. Today’s BAS takes this to the next level with pre-programmed or AI-driven algorithms that automatically reduce energy consumption based on signals from the utility. For example, a BAS can:

  • Pre-cool a building before a DR event, so HVAC systems can run at reduced capacity during peak hours.
  • Adjust lighting levels in non-critical areas without disrupting occupants.
  • Temporarily shut down non-essential systems, such as decorative fountains or escalators in low-traffic zones.

2. Precision and Flexibility

Modern BAS offers a granular level of control, allowing buildings to fine-tune their responses rather than relying on a one-size-fits-all approach. This means only the necessary adjustments are made, ensuring that energy savings are maximized without compromising tenant comfort or productivity.

3. Real-Time Monitoring and Feedback

BAS can provide real-time data on energy usage and system performance, empowering facility managers to monitor and verify their participation in demand response programs. This transparency is essential for understanding the financial and operational impacts of DR events.

4. Integration with IoT and AI

Smart sensors and IoT devices enhance a BAS’s ability to respond to DR events. Paired with AI, these systems can predict energy demand patterns, identify inefficiencies, and suggest or implement proactive measures—essentially turning buildings into active participants in grid resilience rather than passive consumers.

electrician pressing button on panel

Benefits of Building Automation in Demand Response

1. Cost Savings

Demand response programs offer financial incentives for participation, and automated systems ensure these incentives are maximized with minimal effort. Additionally, reducing peak demand can lower a building’s demand charges—a significant portion of commercial energy bills.

2. Enhanced Sustainability

By reducing the need for utilities to rely on fossil-fuel-powered peaker plants during peak demand, demand response contributes to lower greenhouse gas emissions. Buildings that participate in DR programs can also enhance their ESG (Environmental, Social, and Governance) profiles—a critical factor for investors and tenants alike.

3. Resilience

Demand response isn’t just about saving money or cutting emissions—it’s about keeping the lights on. By participating in DR programs, buildings help stabilize the grid, ensuring that energy is available for critical services during emergencies.

4. Positive Brand Image

Organizations that actively support grid resilience demonstrate leadership in sustainability and innovation. This can translate to improved tenant satisfaction, stronger community relations, and a competitive edge in the market.

Overcoming Barriers to Adoption

Despite its benefits, integrating building automation systems with demand response programs isn’t without challenges.

  1. Initial Costs: Upgrading to a BAS capable of participating in DR can require significant upfront investment. However, falling costs of IoT devices and federal or state incentives can help offset these expenses.
  2. Interoperability: Many existing buildings operate on legacy systems that may not easily integrate with modern DR programs. Open protocols and standardized platforms can help bridge this gap.
  3. Tenant Concerns: Occupants may worry that DR participation could affect their comfort or productivity. Transparent communication and careful calibration of automation systems can alleviate these concerns.

Future Trends: Building Automation Meets the Grid

As the energy landscape evolves, the integration of BAS and DR is set to deepen, driven by several key trends:

  • Decentralized Energy Resources (DERs): Buildings with on-site renewable energy systems (e.g., solar panels) and energy storage can play an even bigger role in DR, supplying power to the grid or reducing consumption as needed.
  • Grid-Interactive Efficient Buildings (GEBs): The U.S. Department of Energy has been championing the concept of GEBs—buildings that integrate energy efficiency, demand response, and renewable energy to act as fully grid-responsive entities. BAS will be at the heart of this transformation.
  • Artificial Intelligence and Machine Learning: AI algorithms can analyze vast amounts of data to optimize DR participation, predict future grid needs, and even negotiate DR contracts autonomously.

Conclusion

Demand response represents a pivotal strategy for achieving a more resilient and sustainable energy grid, and building automation systems are key enablers of this vision. By integrating with DR programs, BAS can help balance supply and demand, reduce costs, and enhance energy resilience—all while keeping tenants comfortable and operations efficient.

For facility managers, the question is no longer whether to participate in demand response, but how soon they can integrate these capabilities into their buildings. The grid is evolving, and those who fail to adapt risk being left behind in a world where energy efficiency, flexibility, and resilience are non-negotiable. Whether you’re managing a sprawling office complex, a university campus, or a state-of-the-art hospital, investing in building automation that supports demand response isn’t just good for the grid—it’s good for your bottom line and the planet.

How to Improve Efficiency in Your HVAC System

How to Improve Efficiency in Your HVAC System

Heating, ventilation, and air conditioning (HVAC) systems are a critical component of any building’s infrastructure. They are responsible for maintaining indoor air quality and ensuring a comfortable environment for building occupants. However, HVAC systems can also be a significant source of energy consumption and cost for building owners and managers. Therefore, it is essential for FMs to improve the efficiency of their HVAC systems to reduce energy costs and improve the overall building performance. Here are some ways you can improve the efficiency of your building’s HVAC system.

Conduct Regular Maintenance

Regular maintenance is essential to keeping HVAC systems functioning at their best. Facilities managers should schedule regular inspections, cleanings, and repairs to ensure that HVAC systems are running efficiently. Neglected HVAC systems can lead to dirty filters, clogged coils, and leaky ducts, which can reduce performance and increase energy consumption. Regular maintenance can help prevent these issues, extend the lifespan of the system, and save energy and money in the long run.

rooftop air handling unit

Use High-Efficiency HVAC Equipment

Upgrading to high-efficiency HVAC equipment can significantly improve the efficiency of the system. Facilities managers should consider using equipment that meets or exceeds industry standards, such as those certified by ENERGY STAR. High-efficiency HVAC equipment uses less energy than traditional equipment, which can lead to significant energy savings over time. Moreover, high-efficiency equipment is often designed to operate at part-load conditions, which can result in additional energy savings during periods of low demand.

Install Programmable Thermostats

Programmable thermostats are a valuable tool for improving HVAC system efficiency. They allow facilities managers to set temperature schedules that align with the building’s occupancy schedule. For example, the thermostat can be set to lower the temperature during non-business hours or weekends when the building is unoccupied and raise it before employees arrive. This simple step can reduce energy consumption and lower energy costs significantly. Also, consider automating your after-hours HVAC program or going HVAC on-demand for the weekends. These programs cut energy waste while giving your tenants more flexible work hours.

Optimize Airflow

Optimizing airflow is another essential factor in improving HVAC system efficiency. Facilities managers should ensure that HVAC systems are designed to deliver the right amount of air to each area of the building. The air ducts should be sized correctly to match the load requirements of the building, and they should be sealed to prevent air leakage. Additionally, filters should be checked regularly and replaced as necessary to ensure that the system is not overworking to compensate for restricted airflow.

Consider Renewable Energy

Facilities managers should also consider integrating renewable energy sources into their HVAC systems. Renewable energy sources such as solar and geothermal can provide an energy efficient and sustainable source of energy for HVAC systems. Solar panels can generate electricity to power the HVAC system, while geothermal systems can use the ground’s stable temperature to heat or cool the building. Although these options may require significant upfront investment, they can provide long-term cost savings and reduce the building’s carbon footprint.

Improve Building Envelope

Improving the building envelope is another way that facilities managers can improve HVAC system efficiency. The building envelope includes the walls, roof, windows, and doors that separate the indoor and outdoor environments. Improving insulation, weather stripping, and window and door seals can reduce heat transfer and prevent air leaks, resulting in less heating and cooling energy needed. The HVAC system will have less load to handle and thus function more efficiently.

In conclusion, improving the efficiency of HVAC systems can significantly reduce energy consumption and lower costs for building owners and managers. Facilities managers can achieve this by conducting regular maintenance, using high-efficiency equipment, installing programmable thermostats, optimizing airflow, considering renewable energy, and improving the building envelope. With these steps in place, facilities managers can ensure that their HVAC systems are functioning optimally, providing comfortable environments for building occupants while saving energy and money in the long run.

What is Fault Detection and Diagnostics (FDD)?

What is Fault Detection and Diagnostics (FDD)?

Fault detection and diagnostics (FDD) is the process of identifying and analyzing malfunctions or failures within a building’s systems to detect and diagnose faults as early as possible. Early detection minimizes the impacts of downtimes, prevents future failures, and improves overall system performance. FDD is crucial for maintaining the reliability and efficiency of a building’s HVAC system.

How Do FDD Systems Work?

FDD is typically achieved using sensors, monitoring systems, and diagnostic algorithms. These tools work together to continuously monitor the performance of the system and detect any abnormal patterns that may indicate a fault. The diagnostic algorithms then analyze the collected to identify the specific fault and provide recommendations for how to address it.

One of the key benefits of FDD is that organizations can proactively identify and address potential issues before they lead to costly downtime or equipment damage. Too often, building owners, maintenance staff, and systems integrators work within a reactionary model, which often follows these steps:

  1. BMS alarm sounds for a VAV
  2. VAV unit inspected
  3. Maintenance request created
  4. Repair or replacement made

This reactionary model works but is inefficient. How long was the VAV malfunctioning before the alarm? How much energy was lost before? How long as it been affecting occupant comfort levels? How much time is required for all steps? How much energy, money, and comfort are sacrificed during downtime? These questions represent the issues inherent in the reactionary model.

FDD sees the problem before the inefficiencies start by using analyzing data from fault trends to predict failures before the actual alarm sounds. If a VAV is consistently running below specification, FDD can flag the activity as consistent with a failing terminal unit. That gives maintenance longer lead times and shortens downtimes.

Basic flow diagram that shows how a diagnostic algorithm works.
Diagnostic algorithms like this basic one, move through a series of steps to detect and identify solutions to equipment failures.

FDD Systems Lower Energy Costs

With the growing emphasis on energy efficiency, FDD is becoming increasingly important as a tool for improving overall system performance and reducing energy consumption. Recent studies show that between 5% – 30% of commercial building energy is wasted due to problems associated with controls (Deshmukh 2018). So, FDD offers a massive opportunity to increase energy savings by finding faults faster.  

One of the most common types of FDD systems used in buildings is Building Energy Management Systems or BEMS. These computer-based systems monitor and control the HVAC, lighting, and other building systems to optimize energy efficiency. BEMS often use temperature sensors to monitor the performance of an HVAC system and detect when the system is not working as efficiently as it should. The diagnostic algorithms then analyze this data and identify the specific problem, such as a clogged filter or malfunctioning compressor.

Predictive Analytics

Another important aspect of FDD is the use of predictive analytics. Predictive analytics uses historical data and statistical models to predict when a system is likely to fail. This enables building operators and maintenance staff to take proactive measures to address potential issues before they lead to costly downtime or equipment damage. Predictive analytics can be used in a wide range of systems, including industrial equipment, vehicles, and even wind turbines.

Furthermore, the use of predictive analytics can enable organizations to take proactive measures to address potential issues before they lead to a complete system failure.

Improving System Performance

While FDD is typically associated with detecting and diagnosing equipment failures, building operators can use it to improve system performance. By identifying and addressing inefficiencies in a system, organizations can improve overall system performance and reduce energy consumption. For example, an FDD system in an HVAC system might identify that the system is running at a higher temperature than necessary, resulting in increased energy consumption. By addressing this issue, the organization can reduce energy consumption and improve overall system performance.

In conclusion, FDD is an important tool for maintaining the reliability and efficiency of various systems. By detecting and diagnosing faults early on, organizations can take steps to address the problem before it leads to costly downtime or equipment damage.

The Metaverse, Digital Twins, and Building Decarbonization

The Metaverse, Digital Twins, and Building Decarbonization

After the former-company-known-as-Facebook rebranded itself in late 2021 to Meta, much of the world discovered the “metaverse”—the next generation of human connectivity that would fundamentally transform how we socialize and work.  

According to Zuckerberg’s vision, the metaverse will be a place where social interactions are completely virtual, with self-created and customizable avatars interacting in ways that seem so real, we will easily take them as such. The new digital reality would affect work too, allowing workers to be at the “office” without leaving their home or changing out of their sweatpants. Remote workers no longer need to worry their physical office cohorts will race ahead, grabbing the next promotion or swanky project. Everyone would work in the same “space” regardless of their physical location.  

The move to an immersive digital social life will certainly have massive implications for society, but building a new digital Agora for the modern world only scratches the surface of what the metaverse will be. That’s because its value extends beyond video games, social media, and the workplace. In fact, the sector to feel the most impact of these new virtual spaces will likely be today’s very real built environments. 

Building Digital Twins 

One key aspect of the metaverse for the built environment is the digital twin—a virtual doppelganger of a physical object or process. The notion of such a digital double is several decades old and the culmination of advances in 3D/BIM software, machine learning, and virtual technology. While architectural drawings have rendered 2D renderings of buildings for hundreds of years, 3D software added that extra dimension. Later, virtual reality would make the fourth dimension (time) possible. These advances set the stage for modeling physical processes like the human body or providing virtual walkthroughs of spaces like residential and commercial buildings.   

However, digital twins serve a more important and practical purpose than visual mimicry; they attempt to model reality itself. To do this, digital twins must account for as many data points as possible. This includes every object, process and system that exists within a building—from the largest HVAC plant to the smallest occupancy sensor. All digital building systems function within a virtual world dynamically modeled to mimic the dimensions of time and space and natural forces. In short, the virtual world contains the same physical limitations as its physical counterpart.  

The advantage of a digital twin, whether it be a building or an entire city, is that you can make changes and see what happens without doing it for real. This can be advantageous when time and costs are too great for real-life recreation or when impractical or impossible. Climate scientists, for example, use digital twins of the Earth’s weather systems to make predictions about the effects of global warming.  

The more data points that make up your digital twin, the more accurate your simulations. In this way, data points function much like pixels that make up a screen, in that the more you can pack into a model, the higher the “resolution” and more life-like images you get.  

However, such huge buckets of data take enormous amounts of computational power to process and manage. That’s where artificial intelligence and machine learning have helped give birth to the metaverse. Sophisticated algorithms do much of the “thinking” for us—locating patterns, making connections, running simulations and spitting out the results. Without them, modeling of systems is a rudimentary process, and it’s only relatively recent that we’ve been able to handle enough data to represent a virtual facsimile of complex physical processes and systems.   

Helping Speed Up Building Decarbonization Adoption 

As the metaverse takes its first steps, markets are already pricing in the tech’s potential to transform the built world. From a current global market size of $3.1 billion in 2020, experts project the digital twin market will reach $48.2 billion by 2026. Such growth is why some engineers, architects and entrepreneurs are looking to the metaverse and AI technology to help lower carbon emissions. In fact, an Ernst and Young study found that digital twins can reduce a building’s carbon emissions by half.   

Founder and CEO of Cityzenith, Michael Jansen, oversees a digital twin platform that’s leading the push to decarbonize entire cities using metaverse technology. Recently Jansen hosted a live event laying out the current challenges to building decarbonization and how investing in digital twins can speed up green capital investments in the U.S. One pain point for property owners is retrofitting costs, which the CEO estimates at $4 to $7 USDs per square ft ($21 to $75 per sq m). “When you consider the fact that building owners spend about $2.10 per square foot on energy annually, it’s a large number,” Jansen states. 

Another hurdle to building decarbonization adoption is the inherent conflict between the short-term gains investors demand vs the long-term investment that sustainable retrofitting requires. “The payback periods on typical [green] retrofits can be 10 to 15 years,” Jansen explains. “Those at the top of the investment pyramid typically look for returns within three to five years. As a result, a lot of these investments just don’t happen.” 

While Jansen admits there are many challenges to green investment and adoption, he believes data is the obvious answer, at least for the short term. But buildings and cities contain thousands of software platforms, untold sensors, and BMS systems sending and receiving gigabytes of data through the air and over wires. It’s understandable that building managers can often feel as if they’re drowning in a sea of data and the digital tools that fill it.   

Jansen claims it’s this “chaos of tools” that’s slowing building decarbonization efforts throughout the market. However, it’s understandable property owners would sidestep solving the issue of data glut, especially given the more immediate threats like higher construction costs, supply chain issues, swelling energy prices, and a shrinking demand for commercial office spaces.  

Still, the Cityzenith CEO is correct in the assumption that funneling the increasing volume of data streams into a singular control is a desired outcome for most property and city managers. In fact, it’s this same consolidating impulse that’s motivating the move to integrated systems and open protocols within BMS technology today. Consolidation certainly increases data points, which is what digital twins need to be effective.   

What’s needed is a “system of systems,” Jansen says. “The purpose of building a kind of metaverse around all of this…was to allow all these decarbonization processes to happen in one common place. So, all that activity could be studied and simulated before anybody actually spends a dollar. We use digital twins to predict energy consumption and financial outcomes to help drive down capital risk and increase adoption.”  

Metaverse for Asset and Risk Management   

While digital twins have numerous upsides for building decarbonization and efficiency, they can also help property owners and managers safeguard their investments. With aggregated data from building systems, equipment, and real-time sensors, digital twins can run physics-based models built on “what-if” scenarios.  

Building and city managers can ask energy-related questions like “What if we bought 10% more solar and wind energy?” or “What if we generated more power on-site with roof-top solar array?”. After running such scenarios through a digitized property, owners would have a more accurate picture of the financial and operational impacts before committing. More importantly, they could easily tweak their input data until the outcomes fall within acceptable limits.  

By using digital twins to accurately see future outcomes, property managers can also bolster their risk management. “What-if” statements can also apply to emergency situations like pandemics, natural disasters, and social upheaval. During COVID, many property owners scrambled to adjust to sudden lockdowns, indoor air quality demands, new hygiene mandates, and occupancy management challenges. Digital twin simulations of these variables could have better prepared owners and managers for the challenges while saving time, money, and possibly lives.     

Sources: 

“Cityzenith’s real world metaverse for decarbonization”. Published April 21, 2022, accessed April 28, 2022. https://youtu.be/l0L_7gwguoA 

“Digital twin: the Age of Aquarius in construction and real estate.” Todd Lukesh, Eric Ottinger, Nipun Bajaj, Jordan Stein, Erica Crandon, Mark Gibson and Akanksha Jain. Published May 2021, accessed 27 April 2022. https://www.ecmag.com/sites/default/files/Digital%20twin%20-%20the%20Age%20of%20Aquarius%20in%20construction%20and%20real%20estate.pdf 

“Digital Twin market”. Markets and Markets website, , accessed 25 March 2021, © 2021 Markets and Markets Research Private Ltd. https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html 

“Everything Facebook revealed about the Metaverse in 11 minutes”. CNET. Published October 29, 2021. Accessed April 26, 2022. https://youtu.be/gElfIo6uw4g 

Open Building Systems are a Hedge Against Future Uncertainty

Open Building Systems are a Hedge Against Future Uncertainty

The social, environmental and technological challenges for the commercial real estate sector are significant. Many building owners and managers are still adjusting to the disruptions of the COVID pandemic, lock downs, remote working, mask mandates, rising energy costs and the move to hybrid work models. Few, if any, anticipated these events, nor the dramatic shifts they would kick start in building management and design.  

On top of quickly developing social changes, there’s the long-term environmental impacts of global warming. Much of the planet is already feeling the implications of rising temperatures with increased flooding events, stronger storms, and eroding coast lines. All pose specific risks to property owners, since 10% of the world’s population lives in coastal areas that are less than 10 meters above sea level, according to an UN fact sheet.  

Increased migration to cities and urban areas is spurring building development to a faster pace. The World Economic Forum estimates that two-thirds of the global population is expected to live in cities by 2050 and already an estimated 800 million people live in more than 570 coastal cities vulnerable to a sea-level rise of 0.5 meters by 2050. Technological advances pose yet another challenge to commercial real estate owners, as many feel the pressure by market competition and new government regulations to adopt energy and time saving building tech. 

Given these social, environmental and technological challenges, it would seem change itself is becoming increasingly accelerated and unpredictable. Making things worse is the fact that we know less about the extent to which these factors affect each other. A warmer climate makes future pandemics more likely, which increases remote working, which reduces greenhouse gases. But higher temperatures also increase HVAC demand, which increases energy usage and greenhouse gases.   

The entire system is connected, and each component poses a significant challenge in its own right; however, when combined, they will undoubtedly produce unforeseen outcomes that require quick course corrections at best, and entire paradigm shifts at worst.   

While no one can predict the future, they can position themselves and their properties to better manage the unknown unknows. One way to stay flexible and adaptable is to adopt automated building controls built on open source protocols. Open building systems benefit from more technological flexibility, which can act as an important hedge against uncertainty.   

Open System Protocols: A Short History 

In the late 70’s early 80’s, large companies like Siemens, Johnson Controls and Honeywell took the first steps in connecting systems through electronic networks. Each brand developed proprietary “languages” or protocols that allowed building components like HVAC, lighting and alarms to “talk” to one another. While this created an efficient, dependable and integrated system, it also locked each property owner into the company’s proprietary hardware and software. And since connected systems were intended to last a decade or more, owners had little flexibility for innovation and change. In fact, it was the building systems provider that determined the speed and quality of that change.    

Later in the mid to late 90’s, new organizations and companies like Tridium would introduce open protocols like the Niagara Framework, BACnet and LonWorks. These component languages didn’t limit owners to one brand by speaking one language. Instead, they could “interpret” between the other protocols, freeing owners to mix and match brands. Being “open” now meant property owners and managers could change the way they invested and used building technology.  

Today, open protocols are a key play in helping evolve the next generation of automated building systems via IoT devices and smart building technology.  

Open Systems and Adaptability 

With open protocols, owners and managers can adapt quickly to market trends. With propriety systems, you’re locked into one manufacture’s software and hardware. Making upgrades or replacing components can be more costly than an open system. That’s because an open system is much like an open market. The more companies that compete for your business, the lower the price. Having the choice to shop around gives you budget flexibility to stay solvent sudden market fluctuations.  

Quality is also affected. With open building systems, you can expand your search for new building systems and components outside a single contractor—who may or may not have the best quality available—and pick the best-of-breed tech. Component quality can vary based on priority, but open systems provide more flexibility for bigger investments. High quality investments are often long-term investments, so CAPEX projects also become easier to plan and deliver. 

From a budgetary perspective, the best adaptability feature of open building systems is the ability to connect new devices to older systems. Open systems offer better ROI on legacy components. Building owners can realize their full technology investment by extending the life of older systems, while also adopting new solutions to keep them competitive. 

Open source also makes it easier to customise your building systems. Non-proprietary protocols are valuable tools for developers and engineers to create bespoke solutions for the specific needs of their customers. Since connecting devices is easier, solutions are faster to develop, keeping you nimble and on-budget.  

Amazon's biodome headquarters in seattle washington
The Amazon “Biodome” campus in Seattle, Washington is a powerful brand statement about the company’s values.

Building Brand       

Many of today’s biggest brands extend beyond their name recognition and marketing to include their physical properties. From Amazon’s Biodomes to Apple’s Spaceship, today’s corporate facilities and HQs are as much a part of the corporate brand as the logos themselves. But future businesses need not be on the Fortune 500 list to feel the necessity of such architectural recognition. Trends are already moving there fast, as post-pandemic attitudes toward workplace safety, air-quality and hygiene become part of a business’s social contract with its workers and communities. The safety and security occupants feel about a facility speaks volumes about those who own and lease its spaces.  

In a recent episode of DCTV, Mitchell Day of Distech expressed the idea that a building is essentially a fundamental representation of a brand’s core values: 

“A building is no longer just where you work,” he states. “A building expresses to the public who you are as a company, how you want [the public] to see how you see your employees and your products and who you want to be to the rest of the world.” 

Day’s statement not only reflects the growing importance of facilities in general, but it also signals a shift in attitudes towards buildings as a core part of corporate responsibility. Today, brands feel more pressure than ever to adopt sustainable manufacturing processes, low-carbon footprint buildings, alternative energy sources and social responsibility. How a building functions, its efficiency and connectivity are indicators of that responsibility.   

Open building systems offer the flexibility to adapt to cultural expectations. As Day himself says: “Open systems provide the power to give people more choices on how they express their brand.” 

The Future is Complexity 

It’s often said that buildings are “living” things, formed from complex systems working together to produce a habitable and safe environment for occupants. It’s an apt analogy, yet “complexity” is relative. With every passing year, emerging technologies like system integration, IoT, machine learning, smart tech and next gen sensors are making the dream of true system unification a reality. Tech is evolving at such a rapid pace it’s likely in a decade or two, today’s buildings may be likened to single-celled organisms by comparison. The entire “carpentered-world” will seem much more fluid. 

While there are downsides to complexity to be sure, one of the biggest upsides is adaptability. The more complex, the more tools you have, and the more nuanced your approach can be. Complexity and connectivity are what property owners, and their buildings, will need to adapt to the challenges of future pandemics, energy transitions and global warming. Open building systems help building owners and managers manage such complexity. 

Sources 

The Ocean Conference Factsheet: People and Oceans. United Nations, New York, June 5th 2017. 

The Global Risks Report 2019. World Economic Forum. 14th ed. Accessed March 2022. 

The benefit of open connectivity: why an open platform is a key aspect for smart buildings. distechcontrols. YouTube. Published April 20, 2021.