The Metaverse, Digital Twins, and Building Decarbonization

The Metaverse, Digital Twins, and Building Decarbonization

After the former-company-known-as-Facebook rebranded itself in late 2021 to Meta, much of the world discovered the “metaverse”—the next generation of human connectivity that would fundamentally transform how we socialize and work.  

According to Zuckerberg’s vision, the metaverse will be a place where social interactions are completely virtual, with self-created and customizable avatars interacting in ways that seem so real, we will easily take them as such. The new digital reality would affect work too, allowing workers to be at the “office” without leaving their home or changing out of their sweatpants. Remote workers no longer need to worry their physical office cohorts will race ahead, grabbing the next promotion or swanky project. Everyone would work in the same “space” regardless of their physical location.  

The move to an immersive digital social life will certainly have massive implications for society, but building a new digital Agora for the modern world only scratches the surface of what the metaverse will be. That’s because its value extends beyond video games, social media, and the workplace. In fact, the sector to feel the most impact of these new virtual spaces will likely be today’s very real built environments. 

Building Digital Twins 

One key aspect of the metaverse for the built environment is the digital twin—a virtual doppelganger of a physical object or process. The notion of such a digital double is several decades old and the culmination of advances in 3D/BIM software, machine learning, and virtual technology. While architectural drawings have rendered 2D renderings of buildings for hundreds of years, 3D software added that extra dimension. Later, virtual reality would make the fourth dimension (time) possible. These advances set the stage for modeling physical processes like the human body or providing virtual walkthroughs of spaces like residential and commercial buildings.   

However, digital twins serve a more important and practical purpose than visual mimicry; they attempt to model reality itself. To do this, digital twins must account for as many data points as possible. This includes every object, process and system that exists within a building—from the largest HVAC plant to the smallest occupancy sensor. All digital building systems function within a virtual world dynamically modeled to mimic the dimensions of time and space and natural forces. In short, the virtual world contains the same physical limitations as its physical counterpart.  

The advantage of a digital twin, whether it be a building or an entire city, is that you can make changes and see what happens without doing it for real. This can be advantageous when time and costs are too great for real-life recreation or when impractical or impossible. Climate scientists, for example, use digital twins of the Earth’s weather systems to make predictions about the effects of global warming.  

The more data points that make up your digital twin, the more accurate your simulations. In this way, data points function much like pixels that make up a screen, in that the more you can pack into a model, the higher the “resolution” and more life-like images you get.  

However, such huge buckets of data take enormous amounts of computational power to process and manage. That’s where artificial intelligence and machine learning have helped give birth to the metaverse. Sophisticated algorithms do much of the “thinking” for us—locating patterns, making connections, running simulations and spitting out the results. Without them, modeling of systems is a rudimentary process, and it’s only relatively recent that we’ve been able to handle enough data to represent a virtual facsimile of complex physical processes and systems.   

Helping Speed Up Building Decarbonization Adoption 

As the metaverse takes its first steps, markets are already pricing in the tech’s potential to transform the built world. From a current global market size of $3.1 billion in 2020, experts project the digital twin market will reach $48.2 billion by 2026. Such growth is why some engineers, architects and entrepreneurs are looking to the metaverse and AI technology to help lower carbon emissions. In fact, an Ernst and Young study found that digital twins can reduce a building’s carbon emissions by half.   

Founder and CEO of Cityzenith, Michael Jansen, oversees a digital twin platform that’s leading the push to decarbonize entire cities using metaverse technology. Recently Jansen hosted a live event laying out the current challenges to building decarbonization and how investing in digital twins can speed up green capital investments in the U.S. One pain point for property owners is retrofitting costs, which the CEO estimates at $4 to $7 USDs per square ft ($21 to $75 per sq m). “When you consider the fact that building owners spend about $2.10 per square foot on energy annually, it’s a large number,” Jansen states. 

Another hurdle to building decarbonization adoption is the inherent conflict between the short-term gains investors demand vs the long-term investment that sustainable retrofitting requires. “The payback periods on typical [green] retrofits can be 10 to 15 years,” Jansen explains. “Those at the top of the investment pyramid typically look for returns within three to five years. As a result, a lot of these investments just don’t happen.” 

While Jansen admits there are many challenges to green investment and adoption, he believes data is the obvious answer, at least for the short term. But buildings and cities contain thousands of software platforms, untold sensors, and BMS systems sending and receiving gigabytes of data through the air and over wires. It’s understandable that building managers can often feel as if they’re drowning in a sea of data and the digital tools that fill it.   

Jansen claims it’s this “chaos of tools” that’s slowing building decarbonization efforts throughout the market. However, it’s understandable property owners would sidestep solving the issue of data glut, especially given the more immediate threats like higher construction costs, supply chain issues, swelling energy prices, and a shrinking demand for commercial office spaces.  

Still, the Cityzenith CEO is correct in the assumption that funneling the increasing volume of data streams into a singular control is a desired outcome for most property and city managers. In fact, it’s this same consolidating impulse that’s motivating the move to integrated systems and open protocols within BMS technology today. Consolidation certainly increases data points, which is what digital twins need to be effective.   

What’s needed is a “system of systems,” Jansen says. “The purpose of building a kind of metaverse around all of this…was to allow all these decarbonization processes to happen in one common place. So, all that activity could be studied and simulated before anybody actually spends a dollar. We use digital twins to predict energy consumption and financial outcomes to help drive down capital risk and increase adoption.”  

Metaverse for Asset and Risk Management   

While digital twins have numerous upsides for building decarbonization and efficiency, they can also help property owners and managers safeguard their investments. With aggregated data from building systems, equipment, and real-time sensors, digital twins can run physics-based models built on “what-if” scenarios.  

Building and city managers can ask energy-related questions like “What if we bought 10% more solar and wind energy?” or “What if we generated more power on-site with roof-top solar array?”. After running such scenarios through a digitized property, owners would have a more accurate picture of the financial and operational impacts before committing. More importantly, they could easily tweak their input data until the outcomes fall within acceptable limits.  

By using digital twins to accurately see future outcomes, property managers can also bolster their risk management. “What-if” statements can also apply to emergency situations like pandemics, natural disasters, and social upheaval. During COVID, many property owners scrambled to adjust to sudden lockdowns, indoor air quality demands, new hygiene mandates, and occupancy management challenges. Digital twin simulations of these variables could have better prepared owners and managers for the challenges while saving time, money, and possibly lives.     

Sources: 

“Cityzenith’s real world metaverse for decarbonization”. Published April 21, 2022, accessed April 28, 2022. https://youtu.be/l0L_7gwguoA 

“Digital twin: the Age of Aquarius in construction and real estate.” Todd Lukesh, Eric Ottinger, Nipun Bajaj, Jordan Stein, Erica Crandon, Mark Gibson and Akanksha Jain. Published May 2021, accessed 27 April 2022. https://www.ecmag.com/sites/default/files/Digital%20twin%20-%20the%20Age%20of%20Aquarius%20in%20construction%20and%20real%20estate.pdf 

“Digital Twin market”. Markets and Markets website, , accessed 25 March 2021, © 2021 Markets and Markets Research Private Ltd. https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html 

“Everything Facebook revealed about the Metaverse in 11 minutes”. CNET. Published October 29, 2021. Accessed April 26, 2022. https://youtu.be/gElfIo6uw4g 

Open Building Systems are a Hedge Against Future Uncertainty

Open Building Systems are a Hedge Against Future Uncertainty

The social, environmental and technological challenges for the commercial real estate sector are significant. Many building owners and managers are still adjusting to the disruptions of the COVID pandemic, lock downs, remote working, mask mandates, rising energy costs and the move to hybrid work models. Few, if any, anticipated these events, nor the dramatic shifts they would kick start in building management and design.  

On top of quickly developing social changes, there’s the long-term environmental impacts of global warming. Much of the planet is already feeling the implications of rising temperatures with increased flooding events, stronger storms, and eroding coast lines. All pose specific risks to property owners, since 10% of the world’s population lives in coastal areas that are less than 10 meters above sea level, according to an UN fact sheet.  

Increased migration to cities and urban areas is spurring building development to a faster pace. The World Economic Forum estimates that two-thirds of the global population is expected to live in cities by 2050 and already an estimated 800 million people live in more than 570 coastal cities vulnerable to a sea-level rise of 0.5 meters by 2050. Technological advances pose yet another challenge to commercial real estate owners, as many feel the pressure by market competition and new government regulations to adopt energy and time saving building tech. 

Given these social, environmental and technological challenges, it would seem change itself is becoming increasingly accelerated and unpredictable. Making things worse is the fact that we know less about the extent to which these factors affect each other. A warmer climate makes future pandemics more likely, which increases remote working, which reduces greenhouse gases. But higher temperatures also increase HVAC demand, which increases energy usage and greenhouse gases.   

The entire system is connected, and each component poses a significant challenge in its own right; however, when combined, they will undoubtedly produce unforeseen outcomes that require quick course corrections at best, and entire paradigm shifts at worst.   

While no one can predict the future, they can position themselves and their properties to better manage the unknown unknows. One way to stay flexible and adaptable is to adopt automated building controls built on open source protocols. Open building systems benefit from more technological flexibility, which can act as an important hedge against uncertainty.   

Open System Protocols: A Short History 

In the late 70’s early 80’s, large companies like Siemens, Johnson Controls and Honeywell took the first steps in connecting systems through electronic networks. Each brand developed proprietary “languages” or protocols that allowed building components like HVAC, lighting and alarms to “talk” to one another. While this created an efficient, dependable and integrated system, it also locked each property owner into the company’s proprietary hardware and software. And since connected systems were intended to last a decade or more, owners had little flexibility for innovation and change. In fact, it was the building systems provider that determined the speed and quality of that change.    

Later in the mid to late 90’s, new organizations and companies like Tridium would introduce open protocols like the Niagara Framework, BACnet and LonWorks. These component languages didn’t limit owners to one brand by speaking one language. Instead, they could “interpret” between the other protocols, freeing owners to mix and match brands. Being “open” now meant property owners and managers could change the way they invested and used building technology.  

Today, open protocols are a key play in helping evolve the next generation of automated building systems via IoT devices and smart building technology.  

Open Systems and Adaptability 

With open protocols, owners and managers can adapt quickly to market trends. With propriety systems, you’re locked into one manufacture’s software and hardware. Making upgrades or replacing components can be more costly than an open system. That’s because an open system is much like an open market. The more companies that compete for your business, the lower the price. Having the choice to shop around gives you budget flexibility to stay solvent sudden market fluctuations.  

Quality is also affected. With open building systems, you can expand your search for new building systems and components outside a single contractor—who may or may not have the best quality available—and pick the best-of-breed tech. Component quality can vary based on priority, but open systems provide more flexibility for bigger investments. High quality investments are often long-term investments, so CAPEX projects also become easier to plan and deliver. 

From a budgetary perspective, the best adaptability feature of open building systems is the ability to connect new devices to older systems. Open systems offer better ROI on legacy components. Building owners can realize their full technology investment by extending the life of older systems, while also adopting new solutions to keep them competitive. 

Open source also makes it easier to customise your building systems. Non-proprietary protocols are valuable tools for developers and engineers to create bespoke solutions for the specific needs of their customers. Since connecting devices is easier, solutions are faster to develop, keeping you nimble and on-budget.  

Amazon's biodome headquarters in seattle washington
The Amazon “Biodome” campus in Seattle, Washington is a powerful brand statement about the company’s values.

Building Brand       

Many of today’s biggest brands extend beyond their name recognition and marketing to include their physical properties. From Amazon’s Biodomes to Apple’s Spaceship, today’s corporate facilities and HQs are as much a part of the corporate brand as the logos themselves. But future businesses need not be on the Fortune 500 list to feel the necessity of such architectural recognition. Trends are already moving there fast, as post-pandemic attitudes toward workplace safety, air-quality and hygiene become part of a business’s social contract with its workers and communities. The safety and security occupants feel about a facility speaks volumes about those who own and lease its spaces.  

In a recent episode of DCTV, Mitchell Day of Distech expressed the idea that a building is essentially a fundamental representation of a brand’s core values: 

“A building is no longer just where you work,” he states. “A building expresses to the public who you are as a company, how you want [the public] to see how you see your employees and your products and who you want to be to the rest of the world.” 

Day’s statement not only reflects the growing importance of facilities in general, but it also signals a shift in attitudes towards buildings as a core part of corporate responsibility. Today, brands feel more pressure than ever to adopt sustainable manufacturing processes, low-carbon footprint buildings, alternative energy sources and social responsibility. How a building functions, its efficiency and connectivity are indicators of that responsibility.   

Open building systems offer the flexibility to adapt to cultural expectations. As Day himself says: “Open systems provide the power to give people more choices on how they express their brand.” 

The Future is Complexity 

It’s often said that buildings are “living” things, formed from complex systems working together to produce a habitable and safe environment for occupants. It’s an apt analogy, yet “complexity” is relative. With every passing year, emerging technologies like system integration, IoT, machine learning, smart tech and next gen sensors are making the dream of true system unification a reality. Tech is evolving at such a rapid pace it’s likely in a decade or two, today’s buildings may be likened to single-celled organisms by comparison. The entire “carpentered-world” will seem much more fluid. 

While there are downsides to complexity to be sure, one of the biggest upsides is adaptability. The more complex, the more tools you have, and the more nuanced your approach can be. Complexity and connectivity are what property owners, and their buildings, will need to adapt to the challenges of future pandemics, energy transitions and global warming. Open building systems help building owners and managers manage such complexity. 

Sources 

The Ocean Conference Factsheet: People and Oceans. United Nations, New York, June 5th 2017. 

The Global Risks Report 2019. World Economic Forum. 14th ed. Accessed March 2022. 

The benefit of open connectivity: why an open platform is a key aspect for smart buildings. distechcontrols. YouTube. Published April 20, 2021.