The Pros and Cons of Building Automation Systems

The Pros and Cons of Building Automation Systems

Building automation systems (BAS) or “smart buildings”, are increasingly popular in commercial and industrial buildings. Why? Because they improve energy efficiency and reduce costs by integrating and automated systems such as lighting, HVAC, and security. While these systems of systems are often associated with larger commercial or industrial facilities, advances in technology are lowering price points enough for smaller building owners to access the benefits. But before you invest, consider the pros and cons of a building automation system.

What is an Building Automation System?

Building automation systems use a combination of sensors, controls, and algorithms to monitor and manage building systems. These systems can be integrated with a building’s existing infrastructure, such as HVAC and lighting systems, to create a centralized control system that can adjust and optimize building operations in real time. For example, a BAS can automatically adjust the temperature and ventilation in a building based on occupancy levels and outside weather conditions or turn off lights in unoccupied areas to reduce energy waste.

rooftop air handling unit

Building Automation System Pros

Automated building systems have the potential to significantly improve energy efficiency, reduce costs, and improve building comfort and productivity.

Greater Energy Efficiency

AS can use occupancy sensors and time schedules to control lighting and HVAC systems, ensuring that they are only running when needed and at optimal levels. By reducing energy usage during periods of low occupancy, such as nights and weekends, a BAS can help to significantly reduce energy costs.

Better Occupant Experiences

By optimizing building systems for comfort, such as temperature and lighting, BAS can help to create a more comfortable and productive work environment. This can lead to improved employee satisfaction, reduced absenteeism, and increased productivity.

Reduce Maintenance Repair and Costs

By continuously monitoring and optimizing building systems, a BAS can identify and diagnose issues before they become major problems, allowing for timely maintenance and repairs. This can help to extend the lifespan of building systems, reduce repair costs, and minimize downtime.

Real-time Analytics

One key feature of a BAS is its ability to provide real-time monitoring and data analytics. By collecting and analyzing data from building systems, such as energy usage and occupancy levels, a BAS can help building owners and managers identify areas of inefficiency and opportunities for improvement. This can help to inform future decisions around building upgrades, retrofits, and maintenance, allowing building owners and managers to optimize their operations and save money over the long term.

Energy Regulation Compliance

With energy codes and regulations becoming increasingly stringent, it is becoming more important for building owners and managers to optimize their energy usage and reduce waste. By implementing a BAS, building owners and managers can demonstrate their commitment to sustainability and energy efficiency, and potentially qualify for tax credits and other incentives.

medium-sized office building

Building Automation System Cons

Despite the many benefits of automated building systems, there are some potential drawbacks to consider.

Upfront Costs

Building owners may need to invest a significant amount of money to purchase and install the necessary hardware and software to create a fully integrated BAS. This cost can be a barrier for some building owners, particularly for smaller facilities with limited budgets.

Complex Installation

Building owners may need to work with a team of engineers and technicians to design, install, and configure the system, which can be time-consuming and require specialized expertise.

Technical Issues

While BAS systems are designed to be reliable, there is always a risk of technical issues and system failures. These issues can cause downtime and disrupt building operations, which can be costly and frustrating for building owners and occupants.

Staff Training

Adopting a BAS may require building owners to train their staff on how to use the new system. This can be time-consuming and may require additional resources to ensure that staff members are properly trained and understand how to use the system.

Security Concerns

As with any technology, there are potential security concerns with adopting a BAS. Building owners need to ensure that the system is properly secured and protected against cyber threats, as a security breach could have serious consequences for building operations and occupant safety.

While there are pros and cons to adopting an automated building system, building owners and managers should also consider the effects their decisions have on broader issues like climate change. Buildings make up an enormous amount of the world’s energy use and green house gas emissions. Reducing emissions takes collective action. Lower your building’s carbon footprint is doing your part.

AI vs Machine Learning: What’s the Difference?

AI vs Machine Learning: What’s the Difference?

AI and machine learning (ML) are often used interchangeable, but they’re not technically the same thing. However, the difference is smaller than you think, and once you understand it, you’ll never mistake the two again. The following is a very basic explanation and omits many technical aspects of AI and ML which go beyond the scope of the intended audience. The definitions and examples attempt to lay a foundation for further exploration around these topics.

Artificial Intelligence: The Entire Robot

Artificial intelligence (AI) is a broad term that refers to creating machines that can perform tasks that normally require human intelligence. Examples of such tasks include visual perception, speech recognition, decision-making, and language translation. There are many subsets and subfields of AI, each of which tries to solve a specific problem and/or takes a different approach to creating “intelligence”. Here are the five most recognized subsets of AI:

  1. Natural Language Processing (NLP) focuses on enabling machines to understand, interpret, and generate human language. NLP is used in applications such as chatbots, voice assistants, and language translation. ChatGPT is an NLP.
  2. Computer Vision is concerned with enabling machines to interpret and understand visual data from the world around them. Computer vision is used in applications such as object detection or facial recognition. Autonomous vehicles, like some Tesla models, use computer vision.
  3. Robotics develops machines that can physically and autonomously interact with the world around them to perform tasks like assembly line work or rescue operations. Boston Dynamics focuses on robotics.
  4. Expert Systems are designed to mimic the reason-based decision-making ability of an expert in a particular field, such as medical diagnosis or financial analysis. Expert systems are why you keep hearing about AI lawyers defending people in court.
  5. Machine Learning involves feeding data into a machine learning algorithm and allowing it to learn from that data in order to make accurate predictions or classifications about new data.

So, ML is a subset of AI. That’s the first big difference to note. While AI is a term that encompasses a wide range of technologies and techniques, ML is a specific approach to building AI systems.

It’s helpful to think of AI as the “entire robot”—a fully autonomous machine capable of thinking and acting like a human. However, each subset is only one part of the entire robot. Robotics attempts to develop the “body” for interacting with the environment. Computer vision gives the robot the ability to make visual sense of its world. NLP arms it with the power to communicate. ML bestows the faculty of learning. And expert systems send it to university. It’s a true Frankenstein’s monster of disparate parts, but when brought together will finally realize the goal of AI.  

What’s Machine Learning?

You hear a lot about ML because it’s a critical step in creating the entire robot. Almost everything we consider to be alive must be able to learn. Birds do it. Bees to it. Heck, even amoebas do it. But despite its ubiquity in the world of the living, learning is incredibly complex. Therefore, ML is taking on one of the biggest challenges, but it’s a triumph that offers the biggest ROI. Once we create a machine that learns, we can train it to make better decisions. So how do you create a machine to learn?

ML uses statistical algorithms to enable machines to learn from data and improve their performance on specific tasks over time. ML algorithms analyze large amounts of data to identify patterns, which it uses to make predictions or decisions on new data. Like humans, ML is a process that requires that machines be “taught” by exposing them to information.

ML Example: House Price Estimator

Suppose you wanted to create a ML learning algorithm that predicts the price of a house based on its size and location. You would need two sets of data: a training set and a test set. First, we create a training set of data composed of recently sold houses with their sale price and location.

The ML then processes the training data to look for patterns. After some processing, let’s say it “learned” the following “rules”:

  1. Houses larger than 2,000 sq ft sell for > $200K
  2. Houses less than 2,000 sq ft sell for < $200K
  3. Houses within 5 miles of the airport sell for < $100K
  4. Homes within 5 miles of the lake sell for > $300K

The algorithm could then use this knowledge to predict the price of a house outside the training dataset (i.e., the test set). For example, a house that is:

  • 2,500 sq ft and 3 miles from airport.

Since the new house is more than 2,000 sq ft, the algorithm would then apply the “> $200K” rule, but since the it’s also less than 5 miles of the airport, it would apply the “<$100K” rule. Therefore, the algorithm’s prediction would likely be “$150K”.

Three house prices with one predicted by AI

Next, the ML algorithm checks its guess against the actual price, which is $170K. It now has a $20,000 discrepancy it needs to resolve. It checks for more patterns and learns that, as houses of equal size get closer to the airport, they decrease in price. Through some calculations, the program can determine the changes in price by proximity and apply the data as a weighted value in its next prediction. For example, maybe each mile closer to the airport equates to a 10% decrease in price.

The machine uses this constant process of guessing and checking (called backpropagation) to improve its predictions. The more iterations and inputs, the “smarter” the algorithm gets.

“So what?”, you might ask, “Isn’t this simple logic? Why do we need a machine to do this?” Well, for one, ML can sift through data, find patterns, and test its guesses against real world data at an astonishing rate. In short, it can “learn” much quicker than humans. For another, it can juggle many more parameters than we ever could, so its guesses will inevitably we more accurate over time.

Think about all the factors that go into the price of a house besides size and location. There’s the house’s age, condition, number of rooms, the market conditions, and seller motivation just to name a few. But there are other less typical considerations like current interest rates, lot locations, or roof type. When you drill down further, you find that the real number of factors is enormous. Few sellers place a critical role on the color of a house when calculating an asking price, but what if it mattered more than we thought? What about the history of the house or the future of the neighborhood where it resides? The better our predictive capabilities, the more important these “lesser” considerations become.

ML can iterate much faster and with greater detail than we can, making it more efficient at locating “hidden” patterns. What if dark-colored houses sold for higher prices than light-colored ones? Maybe houses with more east-facing windows were cheaper than more west-facing ones. Machine learning can consider all these factors and then some—and do it in real time.

Finally, imaging adding to this learning algorithm the ability to search for, monitor, and collect house price information for a large region of the country. It would be a fully autonomous learning and predicting machine that would only get smarter the longer it worked. That’s where ML is at today.

Conclusion

It’s easy to see how ML learning algorithms are a game changer for humanity. Their application to knowledge-based work of every kind is almost limitless. What’s AI developers are attempted is the automation of thinking itself. Translate these advantages to building automation, and it’s easy to see how ML will transform the built environment. Imagine AI that could plan your building’s HVAC setpoints a week in advance based on a weekly weather forecast and price predictions for energy costs. What about a FDD system that could predict chiller failure with 98% accuracy?

Basics of Building Automation Systems: A Beginner’s Guide

Basics of Building Automation Systems: A Beginner’s Guide

As technology continues to advance, building automation systems have become increasingly popular in commercial and residential spaces. Like our vehicles and homes, many of the systems that run commercial and industrial buildings have become automated. Automation systems can make buildings more efficient, secure, and comfortable for occupants. In this beginner’s guide, we’ll explore the basics of building automation and how it works.

What is Building Automation?

Building automation refers to the use of technology to control various systems in a building, such as heating, ventilation, and air conditioning (HVAC), lighting, security, and more. Building automation systems (BAS) use sensors, controllers, and software to automate and monitor these systems, allowing for optimal performance and energy efficiency.

How Building Automation Works

Building automation systems work by collecting data from sensors that are placed throughout the building. These sensors monitor various factors such as temperature, humidity, and occupancy. The data is then sent to a controller that analyzes the information and makes decisions based on pre-set parameters. For example, if the temperature in a room is too high, the controller may turn on the air conditioning to cool the space.

motion sensor
Sensors like this motion detector can be connected to lighting and HVAC systems to deliver service only when spaces are occupied.

One of the key benefits of building automation is that it allows for the coordination of different systems in a building. For example, if a room is not occupied, the lights can be turned off automatically to save energy. If the room becomes occupied, the lights can be turned on and the temperature adjusted to a comfortable level. These coordinated actions can help to save energy and create a more comfortable environment for occupants.

Components of Building Automation Systems

Automation systems for buildings consist of several key components. These include:

  • Sensors: Sensors are used to monitor various parameters such as temperature, humidity, and occupancy. They can be installed in different parts of the building, such as the walls, ceilings, and floors.
  • Controllers: Controllers are responsible for analyzing the data collected by sensors and making decisions based on pre-set parameters. They can be programmed to control various systems in the building, such as HVAC, lighting, and security.
  • Actuators: Actuators are used to control various systems in the building. For example, they can be used to turn on the air conditioning or adjust the lighting in a room.
  • Software: Software is used to program and control the building automation system. It can be used to set parameters for different systems, monitor performance, and make changes as needed.
actuator for an HVAC automation system
BAS components like HVAC actuators automatically adjust air flow dampers to keep rooms at comfortable temperatures.

How Does Automation Help People?

Building automation systems offer several benefits to building owners and occupants. Some of the key benefits include:

  • Energy Efficiency: Building automation systems can help to reduce energy consumption by optimizing HVAC, lighting, and other systems. This can result in lower energy bills and a reduced carbon footprint.
  • Comfort: Building automation systems can help to create a more comfortable environment for occupants by adjusting temperature, humidity, and lighting levels based on occupancy and other factors.
  • Safety and Security: BAS can help to improve safety and security by monitoring the building and alerting security personnel in case of any issues.
  • Maintenance: Automation systems can help to reduce maintenance costs by providing real-time data on the performance of various systems. This can help to identify and address issues before they become major problems.

BAS Layers

An automation system typically has three layers: management, controller, and field. The field layer is composed of devices such as sensors and actuators. These are the devices “in the field” that do the actual work of reading data and/or operating equipment.

The middle layer is the controller layer. It contains controllers, which receive the inputs from field devices, makes decisions, and relays commands to those devices.

Finally, the “top” layer is the management layer. This “supervisory layer” contains the software that manages the entire BAS and brings all controls to a single access point. The management layer usually contains graphic displays that let owners and managers easily see the status of the system or individual parts.  

Graphics like these are often part of the BAS management layer. This graphic shows the various levels of three water tanks.

Challenges of Building Automation

While building automation systems offer many benefits, there are also some challenges to consider. One of the main challenges is the cost and complexity of installation and maintenance. Building automation systems can be expensive to install, and they require ongoing maintenance to ensure optimal performance. However, advances in technology are bringing down the costs of BAS systems, and many businesses and facilities now find it financially beneficial to invest in basic components and systems.

Resources

Now add to what you’ve learned. Check out these resources on the BAS basics:

How to Improve Efficiency in Your HVAC System

How to Improve Efficiency in Your HVAC System

Heating, ventilation, and air conditioning (HVAC) systems are a critical component of any building’s infrastructure. They are responsible for maintaining indoor air quality and ensuring a comfortable environment for building occupants. However, HVAC systems can also be a significant source of energy consumption and cost for building owners and managers. Therefore, it is essential for FMs to improve the efficiency of their HVAC systems to reduce energy costs and improve the overall building performance. Here are some ways you can improve the efficiency of your building’s HVAC system.

Conduct Regular Maintenance

Regular maintenance is essential to keeping HVAC systems functioning at their best. Facilities managers should schedule regular inspections, cleanings, and repairs to ensure that HVAC systems are running efficiently. Neglected HVAC systems can lead to dirty filters, clogged coils, and leaky ducts, which can reduce performance and increase energy consumption. Regular maintenance can help prevent these issues, extend the lifespan of the system, and save energy and money in the long run.

rooftop air handling unit

Use High-Efficiency HVAC Equipment

Upgrading to high-efficiency HVAC equipment can significantly improve the efficiency of the system. Facilities managers should consider using equipment that meets or exceeds industry standards, such as those certified by ENERGY STAR. High-efficiency HVAC equipment uses less energy than traditional equipment, which can lead to significant energy savings over time. Moreover, high-efficiency equipment is often designed to operate at part-load conditions, which can result in additional energy savings during periods of low demand.

Install Programmable Thermostats

Programmable thermostats are a valuable tool for improving HVAC system efficiency. They allow facilities managers to set temperature schedules that align with the building’s occupancy schedule. For example, the thermostat can be set to lower the temperature during non-business hours or weekends when the building is unoccupied and raise it before employees arrive. This simple step can reduce energy consumption and lower energy costs significantly. Also, consider automating your after-hours HVAC program or going HVAC on-demand for the weekends. These programs cut energy waste while giving your tenants more flexible work hours.

Optimize Airflow

Optimizing airflow is another essential factor in improving HVAC system efficiency. Facilities managers should ensure that HVAC systems are designed to deliver the right amount of air to each area of the building. The air ducts should be sized correctly to match the load requirements of the building, and they should be sealed to prevent air leakage. Additionally, filters should be checked regularly and replaced as necessary to ensure that the system is not overworking to compensate for restricted airflow.

Consider Renewable Energy

Facilities managers should also consider integrating renewable energy sources into their HVAC systems. Renewable energy sources such as solar and geothermal can provide an energy efficient and sustainable source of energy for HVAC systems. Solar panels can generate electricity to power the HVAC system, while geothermal systems can use the ground’s stable temperature to heat or cool the building. Although these options may require significant upfront investment, they can provide long-term cost savings and reduce the building’s carbon footprint.

Improve Building Envelope

Improving the building envelope is another way that facilities managers can improve HVAC system efficiency. The building envelope includes the walls, roof, windows, and doors that separate the indoor and outdoor environments. Improving insulation, weather stripping, and window and door seals can reduce heat transfer and prevent air leaks, resulting in less heating and cooling energy needed. The HVAC system will have less load to handle and thus function more efficiently.

In conclusion, improving the efficiency of HVAC systems can significantly reduce energy consumption and lower costs for building owners and managers. Facilities managers can achieve this by conducting regular maintenance, using high-efficiency equipment, installing programmable thermostats, optimizing airflow, considering renewable energy, and improving the building envelope. With these steps in place, facilities managers can ensure that their HVAC systems are functioning optimally, providing comfortable environments for building occupants while saving energy and money in the long run.

What is Fault Detection and Diagnostics (FDD)?

What is Fault Detection and Diagnostics (FDD)?

Fault detection and diagnostics (FDD) is the process of identifying and analyzing malfunctions or failures within a building’s systems to detect and diagnose faults as early as possible. Early detection minimizes the impacts of downtimes, prevents future failures, and improves overall system performance. FDD is crucial for maintaining the reliability and efficiency of a building’s HVAC system.

How Do FDD Systems Work?

FDD is typically achieved using sensors, monitoring systems, and diagnostic algorithms. These tools work together to continuously monitor the performance of the system and detect any abnormal patterns that may indicate a fault. The diagnostic algorithms then analyze the collected to identify the specific fault and provide recommendations for how to address it.

One of the key benefits of FDD is that organizations can proactively identify and address potential issues before they lead to costly downtime or equipment damage. Too often, building owners, maintenance staff, and systems integrators work within a reactionary model, which often follows these steps:

  1. BMS alarm sounds for a VAV
  2. VAV unit inspected
  3. Maintenance request created
  4. Repair or replacement made

This reactionary model works but is inefficient. How long was the VAV malfunctioning before the alarm? How much energy was lost before? How long as it been affecting occupant comfort levels? How much time is required for all steps? How much energy, money, and comfort are sacrificed during downtime? These questions represent the issues inherent in the reactionary model.

FDD sees the problem before the inefficiencies start by using analyzing data from fault trends to predict failures before the actual alarm sounds. If a VAV is consistently running below specification, FDD can flag the activity as consistent with a failing terminal unit. That gives maintenance longer lead times and shortens downtimes.

Basic flow diagram that shows how a diagnostic algorithm works.
Diagnostic algorithms like this basic one, move through a series of steps to detect and identify solutions to equipment failures.

FDD Systems Lower Energy Costs

With the growing emphasis on energy efficiency, FDD is becoming increasingly important as a tool for improving overall system performance and reducing energy consumption. Recent studies show that between 5% – 30% of commercial building energy is wasted due to problems associated with controls (Deshmukh 2018). So, FDD offers a massive opportunity to increase energy savings by finding faults faster.  

One of the most common types of FDD systems used in buildings is Building Energy Management Systems or BEMS. These computer-based systems monitor and control the HVAC, lighting, and other building systems to optimize energy efficiency. BEMS often use temperature sensors to monitor the performance of an HVAC system and detect when the system is not working as efficiently as it should. The diagnostic algorithms then analyze this data and identify the specific problem, such as a clogged filter or malfunctioning compressor.

Predictive Analytics

Another important aspect of FDD is the use of predictive analytics. Predictive analytics uses historical data and statistical models to predict when a system is likely to fail. This enables building operators and maintenance staff to take proactive measures to address potential issues before they lead to costly downtime or equipment damage. Predictive analytics can be used in a wide range of systems, including industrial equipment, vehicles, and even wind turbines.

Furthermore, the use of predictive analytics can enable organizations to take proactive measures to address potential issues before they lead to a complete system failure.

Improving System Performance

While FDD is typically associated with detecting and diagnosing equipment failures, building operators can use it to improve system performance. By identifying and addressing inefficiencies in a system, organizations can improve overall system performance and reduce energy consumption. For example, an FDD system in an HVAC system might identify that the system is running at a higher temperature than necessary, resulting in increased energy consumption. By addressing this issue, the organization can reduce energy consumption and improve overall system performance.

In conclusion, FDD is an important tool for maintaining the reliability and efficiency of various systems. By detecting and diagnosing faults early on, organizations can take steps to address the problem before it leads to costly downtime or equipment damage.