
 SCHEMAS
 DATA

Building Blocks of System Automation

Elwin McKay-Smith and Dominic Lauten

Introduction

It's di�cult to make big data work for you without �rst putting it into a stan-
dard structure. Schemas are that structure—the foundational building blocks
of your digital architecture.

By building your asset database with standard schemas, you’re ensuring your
building, tenants and occupants bene�t from future invocations such as
advanced analytics, AI, machine learning, and cloud computing—the future
of building operations and facilities management.

Once all buildings graduate to smart status, they ’ll be connected to every-
thing, and proptech will help managers do everything from calculating asset
depreciation to managing carbon emissions.

Some will have the capital, but not
the will. Others will have the will
but not the capital. For too many,
the inescapable “solution” to this
data inundation will be to simply
slow down adoption of tech. How-
ever, this only kicks the can down
the road and forecloses on the
bene�ts analytics brings to building
per formance and value.

These growing pains can be avoid-
ed altogether if property owners
see preparation as the investment,
and not tech itself. As a wise person
once said, “Give me six hours to
chop down a tree, and I’ l l spend the
�rst four sharpening the axe.”

But how do you prepare for building tech? What is the “axe” in this scenario?
For most, it will be adopting an interoperability schema standard. Schemas
make recording and managing your asset database easier by ensuring your
asset library is mapped, tagged and organised in a way that ’s easily under-
stood by machines and software. So, these standards are intended for both
building owners and developers, ensuring both parties are speaking the
same language.

Data is a beautiful thing—until
you’re drowning in it. I t ’s l ikely FMs
and building owners will soon be
experiencing the sentiment �rst-
hand, as many �ounder in a sea of
building data from IoT devices, AI &
machine learning, cloud computing,
and new “proptech” ventures—all
collecting, storing, and analyzing
petabytes of info, much of which
may be wasted on an industry too
ill-prepared to receive it.

Over the next �ve to ten years,
we’re likely to hear a chorus of
desperate voices sounding the cry :
“Data, data everywhere and not a
byte to use!”

2

Let ’s use a book as an analogy to answer this question. Books must have
structure, order, logic, words, sentences, paragraphs, punctuation and the
like. These structures and rules are what make writing and reading possible.
Image an entire book with no paragraphs, chapters, or punctuation. Could
readers “get” the story? Yes, but it would be ine�cient and hard-going work.
In the absence of structure and standards, information becomes disparate
chunks of semi-familiar things with little context.

what ’s a database?

A database works in a similar fashion, in that it also must have structure and
rules for reading and writing data. Your building database holds the informa-
tion your building assets need to communicate, and that data must follow
rules. Interoperability standards are those rules for data management. One
critical type of data is metadata.

Today ’s most popular standard schemas di�er in their approach, but all
attempt to standardise the way assets are described and stored to aid
interoperability and software deployment. Project Haystack is a tag-based
schema focusing on streamlining operation between smart devices within
buildings, homes, factories, and cities. The Brick Ontology standardises both
asset labels and connections, allowing the user to create a relational data-
base. But to fully understand the bene�ts schema bring to building systems,
it ’s critical to know exactly how they work.

3

metadata

schema
A schema is a format for creating, recording, storing
and retrieving metadata. Schemas can be a way of
saying “x is a type of thing” or “x is related to y”.
Some schemas are basic, recording only a few
pieces of metadata (e.g., call number and title of a
book). Other schemas are complex, recording multi-
ple pieces of data (e.g., call number, title, author,
page #, publisher, pub date, genre).

Continuing our book analogy: metadata is
any information about a book, such as its
title, author, and publisher info. Therefore,
metadata is “data about data”—It says
something about the data, something
that ’s often just as important to readers as
the book’s contents. Without metadata, it
becomes di�cult to locate, store, discuss,
or appreciate a book’s full meaning. For
example, without the call number, how is a
library patron supposed to locate a speci�c
book?

Asset metadata is similar in that it says
something about the asset, such as its
location, size, type, class, and relationship
to other assets. All this metadata is critical
to e�cient storage and retrieval of all
those bill ions of bits. Therefore, how you
go about handling metadata has a huge
impact on what you can do with it.

4

The more complex your schema, the more descriptive it is, just as a long
sentence is more descriptive than a short one. Consider the following two
sentences:

The dog fetched.1.

2. The black Labrador fetched the yellow tennis ball from its toy box.

What are the major di�erences between these two sentences, and (more
important) what can we do with the second sentence that we can’t do with
the �rst?

For one, Sentence 2 contains more descriptive words (“black Labrador”
"yellow” “toy box”), so we have a better understanding of the context.
Second, the shorter sentence lacks an object. We know the dog fetched, but
we don’t know what it fetched. The second sentence tells us—it ’s the ball.

In the longer sentence, we’re even given information about the situation
(i .e. , the Lab has a toy box). More importantly, Sentence 2 creates a relation-
ship between the subject and the object.

We can say, therefore, that the longer sentence is “relational” in that it
describes how one thing (the dog) is related to another (the ball) , which is
related to another thing (the toy box).

5

These same di�erences exist between informal and standardised schemas.
Longer, more descriptive schemas provide more context and meaning
around things such as a building asset. They ’re also relational, in that they
describe how one asset (e.g., temperature sensor) is related to another (e.g.,
AHU). Consider these two naming schemas for a temperature sensor housed
on Level 9 of a hospital:

While Schema 1 lists only the location (LV09) and device name (TempS),
Schema 2 extends the description to include the building, system, asset
type, point type, speci�c location, and the device class.

With these added details, we now have a relational description of the sensor.
For example, we know it is part of the mechanical (M) system and part of an
AHU. Therefore, we can say Schema 2 is part of a relational database, and
that it gives us a greater understanding of the asset and its place in the
system.

Overall, Schema 2 gives us more context and meaning than Schema 1, and
we can use this information to learn more about how our buildings operate.
Once we extend this schema strategy to our entire building, we have a pow-
er ful way to analyze its contents and functional e�ciency.

A32 _ _ _ _ _ _M AHU L10L82 RMT L9OR2 TS
Building System Asset Type Asset Name Point Type DeviceSupplies Location

/Asset

_TempSLV09#1

#2

6

standard schemas &
relational databases

As we’ve seen, standard schemas provide more detailed descriptions
of building equipment, software, and processes than simple ones.
The upside of this enhanced description is system interoperability.
Within relational databases, an “asset” is no longer just a single piece
of equipment. I t is a well-de�ned instance of a component within a
much larger and more complex system. An asset logically includes
everything it contains and everything that contains it. Integration
creates positive bene�ts for your building management.

Standard Schemas create a common
lexicon and database structure for
software developers to use. Again,
think of the book analogy.

Reading and writing a book both
require adherence to protocols and
structures. Writers understand how
to use those rules to encode mean-
ing, and readers understand how to
use them to decode meaning. When
an author writes “dog”, the reader
understands that to mean a
four-legged domesticated mammal
that barks. The same rules apply to
asset naming standards.

With respect to metadata, it mat-
ters what you call an asset. Too
often, database naming conven-
tions are inconsistent from one
property to the next or even within
an existing building. One system
may refer to a temperature sensor
as “ TempSensor” while another uses
“ TempS”.

Such inconsistencies create a data-
base which humans can make sense
of, but machines can’t. Stan-
dardised schemas remove these
inconsistencies.

Software Deployment

7

8

Adopting a standard naming schema makes software deployment and man-
agement much simpler. Developers and building systems bene�t from a
common, predictable set of rules and naming conventions. Such standards
make software development and deployment easier and cheaper because
both stakeholders are working from a shared data structure. The developer
can simply bolt their software package to your system, and everything works
out-of-the-box.

 Schemas also aid software deploy-
ment by codifying asset relationships.
Schemas de�ne relationships like: “X”
AHU contains “X” VAV, which contains
“X” damper, which contains “X” ther-
mostat, which has "X" setpoint. With-
out this relational data, the software
can't "read” these connections or
understand what an asset is because
it can’t relate it to its constituent
components. (The word “dog” has
little practical meaning by itself, but
in relationship to other words gains
more signifying potential.)

Naming conventions and asset rela-
tionships are often created and dis-
covered manually for building sys-
tems; however, it ’s a tedious and
costly process. Relational schemas
create a predictable, standardised
database that allows software to
easily read the entire system architec-
ture at-a-glance.

Relational schemas
create a predictable,
standardised data-
base that allows
software to easily
read the entire
system architecture
at-a-glance.

“

Conventional BMS pages are static. Their
queries are hard-baked, with pre-built
graphics that deliver data around points
such as fault detection, temperatures,
run speeds and statuses. They are “static”
in that their queries never change. Your
BMS will only “ask” speci�c questions
about your system. They may be import-
ant questions, but they are, to be sure,
l imited.

Contrary to their appearances, however,
buildings aren’t static with respect to
the data they produce, and managers
and engineers often need to run queries
and generate dynamic lists that exist
outside the BMS purview. Using a rela-
tional, standardised schema allows this
l imitless �exibility.

For example, say you suspected one of
your AHUs was starting to fail. You could
run a query that identi�ed all room
temperature sensors that have been
reading above 21 degrees for the last
24-hours for that speci�c AHU.

Because your schema is relational, it
understands which speci�c sensors to
target. You could then upload the data
to a dynamic page to help troubleshoot
per formance issues. Dynamic lists l ike
these can improve predictive failure and
shorten downtimes.

9

Advanced Queries & Dynamic Lists

10

Updating Building Data

Buildings go through many evolutions in their l ife cycle, and these changes
a�ect your asset database. Some changes involve assets. For example, most
�t-outs involve installing or relocating HVAC and electrical equipment. Other
changes are conceptional, such as renaming room numbers or �oor levels.
Because of cost and time commitment, these changes are seldom updated in
the database. Service providers and managers often neglect revising meta-
data for their BMS, �oor plans or switchboards. Instead, remembering these
changes is left to individual team members, who inevitably move on to other
properties or on to retirement.

Eventually, chaos creeps into your building systems and databases. Sudden-
ly, historical data like equipment names and room numbers no longer re�ect
mechanical drawings. Simple replacements of VAVs or actuators become
complex and time-consuming ventures, with engineers forced to track down
which sensors are connected to what assets. Switchboards with mismatched
labels require manual shutdowns of areas to re-map electrical circuits.

Standard relational schemas make updating metadata much easier and more
accurate. Recording changes only requires updating one speci�c piece of
data, l ike a room number or new part. After that, your system automatically
adjusts names and relationships, both upstream and downstream. Standard
schemas cut the time and costs of updating asset databases.

11

Caspiral Engineering Advisors is a building services and technology solutions
consultancy. We specialise in creating, distributing and maintaining building
system schemas that give our client ’s the solid foundations for developing
their property ’s full potential.

+64 21 137 4264
dominic.lauten@caspiral.com

